메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Ferdous Rahman Shefa (University of Liberal Arts Bangladesh) Fahim Hossain Sifat (University of Liberal Arts Bangladesh) Sayed Chhattan Shah (Hankuk University of Foreign Studies) Muhammad Golam Kibria (University of Liberal Arts Bangladesh)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
969 - 974 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This research aims to transform the conventional Ankle-Foot Orthosis (AFO), a specialized medical brace, into a smart device by integrating Internet of Things (IoT) technologies. The smart AFO device incorporates sensors, including a surface electromyogram (sEMG) and an Inertial Measurement Unit (IMU). The sEMG sensor is employed to measure muscle activity, while the IMU sensor captures gait movements. The collected data is subsequently transmitted via a wireless network, first to the fog layer and finally to the cloud server. To facilitate predictive decision-making, the collected data underwent a comprehensive analysis. The analysis was carried out using a variety of machine learning algorithms, providing valuable insights. This process laid the foundation for employing predictive machine learning techniques to compare patient gait data with that of healthy individuals, resulting in the development of an accuracy metric. This metric effectively assesses the Smart AFO"s capacity to predict the degree of improvement achieved by the patient. Among the tested models, the Long Short-Term Memory (LSTM) exhibited the highest accuracy rate, achieving an impressive 95.02% accuracy. To ensure the reliability of the results, the most accurate outcome is cross-checked by the doctor using a separate device. Upon the doctor"s approval, the comprehensive report is securely transmitted to the patient"s device, facilitating efficient communication between healthcare professionals and patients. This technologydriven approach enhances the monitoring and analysis of AFO usage, enabling personalized treatment plans and optimizing the overall patient experience.

목차

Abstract
1. INTRODUCTION
2. LITERATURE REVIEW
3. IOT-BASED SMART ANKLE-FOOT ORTHOSIS
4. IMPLEMENTATION
5. DATA COLLECTION AND ANALYSIS
6. RESULT ANALYSIS
7. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088265216