메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Haifeng Li (Lanzhou University of Technology) Aimin An (Lanzhou University of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
1,259 - 1,264 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The model predictive control (MPC) strategy has been successfully applied to the control of Post-combustion CO₂ capture (PCC) systems. This paper firstly implements the control requirement of three inputs and two outputs of the system by using a multivariable MPC strategy based on the strong coupling characteristics of the PCC system between multiple variables, and then proposes a model predictive control method based on gain scheduling for the operation of the PCC system with strong nonlinearity in a wide range of operating conditions. By modeling the system transfer function at typical operating points, combining the gain scheduling strategy to model the entire system, and using predictive control techniques to ensure the global optimized quality of the control system. The simulation results show that, compared with the conventional MPC control algorithm, the predictive control method based on gain scheduling can quickly track load changes in a wide range of operating conditions, and each output of the coordinated control system is regulated to follow the set value faster, with smaller dynamic deviation, faster control actuator action, relatively smooth control action changes, and good stability.

목차

Abstract
1. INTRODUCTION
2. MODELING AND DYNAMIC ANALYSIS OF PCC SYSTEM
3. MULTIVARIATE MODEL PREDICTIVE OPTIMAL CONTROL OF PCC SYSTEM
4. GAIN SCHEDULING MODEL PREDICTIVE CONTROL OF PCC
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088265654