메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Chujia Guo (Xi’an Jiaotong University) Aimin Zhang (Xi’an Jiaotong University) Hang Zhang (Xi’an Jiaotong University)
저널정보
전력전자학회 JOURNAL OF POWER ELECTRONICS JOURNAL OF POWER ELECTRONICS Vol.18 No.6
발행연도
2018.11
수록면
1,771 - 1,779 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Modern trams with a super capacitor have gained a lot of attention in recent years due to its reliability, convenience, energy conservation and environmental friendliness. Because of its special charging characteristic, the traditional charging structure and control strategy cannot satisfy its charging requirements. This paper presents a new charging topology for fast charging modern trams with a super capacitor and it designs a controller using continuous control set model predictive control (CCS-MPC). There are three contributions in this paper. First, a new charging structure is designed and its mathematics model is derived. The cascade structure is adopted instead of the parallel structure to simplify the control process and to keep the rated power of the controllable part low. Second, a MPC control strategy is proposed to satisfy the charging characteristic. The optimal control signal can be obtained by solving the designed optimization problem. The optimal control signal is related to the discrete control action. In addition, mapping between the continuous control signal and the discrete control action is designed. Third, a semi-physical experimental platform is built to verify the proposed topology and control method. The simulation model and experiment platform are built to verify the correctness of the new structure and its control method. The results obtained show that the new topology can work effectively.

목차

Abstract
I. INTRODUCTION
II. STRUCTURE AND WORKING PROCESS
III. MPC OF THE CHARGING STRUCTURE
IV. SIMULATIONS
V. EXPERIMENTS
VI. CONCLUSIONS
REFERENCES

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-560-000047994