메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Shuji Sawada (Kyushu Institute of Technology) Seiichi Murakami (Junshin Gakuen University) Li Guangxu (Tiangong University) Tohru Kamiya (Kyushu Institute of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
1,494 - 1,497 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Japan has the highest number of CT scanners per million people among developed countries, and the annual medical radiation dose is about six times higher than the world average. Screening of high-risk populations by means of low-dose CT has been verified to be able to reduce lung cancer mortality. However, the low-dose CT image noise should be accurately estimated in order to achieve good image quality as normal dose CT. In this paper, we apply a denoising method using convolutional neural networks without use of the clean images during learning phase. The CNN model is based on SRResNet, which has achieved high performance in super-resolution tasks, and has two attention mechanisms, Spatial Attention and Channel Attention, in the Residual Block. Experiments using whole body slice CT images of pigs showed that the proposed method is useful by comparison with normal dose CT images and by evaluation of image quality using peak signal-to-noise ratio (PSNR).

목차

Abstract
1. INTRODUCTION
2. Methods
3. Experiments and results
4. Conclusion
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088265985