메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Natsuho Baba (Kyusyu Institute of Technology) Tohru Kamiya (Kyusyu Institute of Technology) Takashi Terasawa (University of Occupational and Environmental Health) Takatoshi Aoki (University of Occupational and Environmental Health) Shoji Kido (Osaka University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
1,741 - 1,744 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Lung cancer progresses rapidly, and early detection and treatment are important. Computed tomography (CT) equipment is mainly used for the examination. However, the number of CT images is huge and places a heavy burden on physicians. Therefore, a computer aided diagnosis (CAD) system is necessary to overcome these problem. One of the CAD is temporal subtraction technique. The technique is that performs a subtraction operation using the current and past images of the same patient to remove normal structures and emphasize newly appearing areas that have changed over time. However, because two images taken at different dates are used, artifacts due to misalignment often occur. Therefore, it is necessary to classify partial images with high false-positive rates and enhanced temporal changes into lesions and normal tissue. In this paper, the temporal subtraction image generation method is used to extract candidate areas of abnormal shadows as initial shadows. The proposed method was applied to 22 cases of chest CT images, and the results showed that the proposed method achieved a discrimination accuracy of Accuracy=74.54, TPR=72.65, FPR=22.59, and AUC=79.16 in XGBoost, which is a kind of machine learning method.

목차

Abstract
1. INTRODUCTION
2. METHODS
3. EXPRIMENT
4. DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088266428