메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
양현석 (국립한밭대학교) 박정수 (국립한밭대학교)
저널정보
응용생태공학회 Ecology and Resilient Infrastructure Ecology and Resilient Infrastructure Vol.10 No.4
발행연도
2023.12
수록면
107 - 115 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
고 탁도의 원수는 정수장 운영 및 수 생태 환경에 부정적인 영향을 줄 수 있어 관리가 필요한 수질 인자이며, 하천의 탁도 예측을 통해 고 탁도의 원수의 효율적 관리를 수행하기 위해 관련분야에 대한 연구가 지속되고 있다. 본 연구에서는 대표적인 앙상블 머신러닝 알고리즘 중 하나인 LightGBM (light gradient boosting machine)을 이용하여 탁도를 예측하는 다중 분류 모형을 구축하였다. 모형의 구축을 위해 입력자료를 탁도값에 따라 탁도가 낮은 경우부터 높은 경우까지 4개의 class로 구분하였으며, class 1 - 4에 속하는 자료수는 각각 945개, 763개, 95개, 25개로 분류되었다. 구축한 모형의 class 1 - 4에 대한 정밀도 (Precision) 각각 0.85, 0.71, 0.26, 0.30 재현율 (Recall)은 각각 0.82, 0.76, 0.19, 0.60로 데이터 수가 적은 소수 class에서 상대적으로 모형이 성능이 낮은 경향을 보였다. 데이터 불균형을 해소하기 위해 over-sampling알고리즘 중 SMOTE를 적용한 결과 개선된 모형의 class 1 - 4에 대한 정밀도 및 재현율은 각각 0.88, 0.71, 0.26, 0.25 및 0.79, 0.76, 0.38, 0.60으로 데이터 불균형 해소를 통해 모형의 재현율이 크게 개선되는 것을 확인할 수 있었다. 또한 데이터 구성비율이 모형성능에 미치는 영향에 대한 확인을 위하여 입력자료의 구성비를 다양하게 하고 각각의 자료로 구축된 모형의 결과를 비교하여 입력자료 구성비에 따른 모형성능의 차이를 분석하였으며, 모형 입력자료의 구성비의 적정한 산정을 통해 모형의 성능을 향상시킬 수 있음을 확인하였다.

목차

ABSTRACT
요약
1. 서론
2. 재료 및 실험방법
3. 결과 및 고찰
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089316150