메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박선우 (계명대학교)
저널정보
한국음운론학회 음성음운형태론연구 음성음운형태론연구 제29집 제3호
발행연도
2023.12
수록면
329 - 349 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this study is to test models that automatically classify Korean nouns into native Korean, Sino-Korean, and loanwords by applying a machine learning model, naïve Bayes classification. In this study, 500 native Korean words, Sino-Korean words, and loanwords were collected, and after romanizing and decomposing them into bigram and trigram lists, the bigrams and trigrams were entered into the naïve Bayes classifier. We tested models with and without syllable boundaries, and found that both the bigram and trigram models were over 80% accurate. Contrary to the expectation that the performance of the models would improve as more information about Korean phonotactics was included in the training and validation data, the difference in performance between the bigram and trigram models was not significant. The model that included syllable boundaries in the phoneme sequence information had slightly higher accuracy than the model without syllable boundary information. When comparing the classification results of all five models, the accuracy of the bigram model with syllable boundaries was 83.55%, which was the best. For now, we have modified the model to consider only phoneme sequence information and syllable boundaries, but it is expected that the accuracy of the model can be improved by training the model while excluding bigrams and trigrams, which occur in similar proportions in all categories, and by increasing the size of the data.

목차

Abstract
1. 머리말
2. 한국어의 어휘 계층론과 음소배열 정보
3. 데이터의 수집과 전처리
4. 나이브 베이즈 분류
5. 고유어, 한자어, 차용어 분류 모델의 평가
6. 맺음말
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089313926