메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최의진 (Hoseo University) 한지훈 (Hoseo University) 송승민 (Hoseo University) 홍선기 (Hoseo University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제73권 제1호
발행연도
2024.1
수록면
87 - 96 (10page)
DOI
10.5370/KIEE.2024.73.1.87

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (7)

초록· 키워드

오류제보하기
In this paper, a practical data acquisition method and fault diagnosis method for applying motor fault diagnosis in the field are studied. Since it is very difficult to acquire fault data in the field, unsupervised learning methods that can be trained using only normal state data are mainly used. However, unsupervised learning methods are very vulnerable to disturbances and are difficult to express the fault level. Disturbances in the field include electrical noise, which can cause data acquisition devices to fail due to low power quality in the field and affect the measured signal, and mechanical noise, such as external vibrations, which directly affect the operation of the electric motor. To minimize the impact of electrical noise, it is common to use hardware filters. Unlike previous studies that use theoretical cutoff frequency setting methods, this paper proposes a method to find the appropriate cutoff frequency using LRP(Layer-wise Relevance Propagation) analysis, one of the XAI(eXplainable A.I) techniques, for practical data acquisition. Fault diagnosis in the field requires robust unsupervised learning algorithms that can ignore the presence of mechanical noise in the signal, such as transient shocks. This is solved by post-processing the output of the auto-encoder with a moving average filter. To represent the fault level a data generation technique, the mix-up algorithm, is used. A method is proposed to threshold the auto-encoder multiple times with data generated by the mix-up algorithm. This proposed method shows the availability of motor fault diagnosis considering the on-site data.

목차

Abstract
1. 서론
2. 이론
3. 데이터 분류 실험
4. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089252133