Fluctuations in the price of aquaculture products have recently intensified. In particular, wholesale price fluctuations are adversely affecting consumers. Therefore, there is an emerging need for a study on forecasting the wholesale price of aquaculture products. The present study forecasted the wholesale price of olive flounder Paralichthys olivaceus, a representative farmed fish species in Korea, by constructing multivariate long-short term memory (LSTM) and gated recurrent unit (GRU) models. These deep learning models have recently been proven to be effective for forecasting in various fields. A total of 191 monthly data obtained for 17 variables were used to train and test the models. The results showed that the mean average percent error of LSTM and GRU models were 2.19% and 2.68%, respectively.