메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이대재
저널정보
한국수산과학회 한국수산과학회지 한국수산과학회지 제51권 제3호
발행연도
2018.6
수록면
321 - 327 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
To classify seafloor sediments using a probabilistic neural network (PNN), the frequency-dependent characteristics of broadband acoustic scattering, which make it possible to qualitatively categorize seabed type, were collected from three different geographical areas in Korea. The echo data samples from three types of seafloor sediment were measured using a chirp sonar system operating over a frequency range of 20-220 kHz. The spectrum amplitudes for frequency responses of 35-75 kHz were fed into the PNN as input feature parameters. The PNN algorithm could successfully identify three seabed types: mud, mud/shell and concrete sediments. The percentage probabilities of the three seabed types being correctly classified were 86% for mud, 66% for mud/shell and 72% for concrete sediment.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-151-24-02-090163503