메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
고영진 (Tongmyong University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제28권 제2호
발행연도
2024.6
수록면
58 - 64 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 CNN을 이용한 3상 유도모터 ITSC(Inter-Turn Short Circuit) 고장진단에 있어서, 전류 데이터를 이용한 고장 진단 및 효율적인 이미지 encoding 방법을 제안하도록 한다. 진동, 소음센서를 이용한 방법과 달리 전류를 이용하는 방법은 데이터의 손실이 낮을 수 있다는 장점은 있지만, 3상 신호로 인해 CNN의 채널 수 증가의 부담이있다. 이에 D-Q 동기좌표계의 D축성분만의 데이터를 활용하여 채널 부담을 줄이고, 효율적인 입력 이미지 구성 방법을 알아보고자 SWM(Slide Window Method)과 GAF(Gramian Angular Field)방식을 비교하도록 하였다. 데이터는 무부하부터 전부하까지 전체 변화를 고려하였으며, 그 결과, GAF방식은 약 74%, SWM방식은 약 65%로, GAF방식이 약 9%의 높은 정확도를 보임을 알 수 있었다. 또한, 학습된 속도에 있어서 약 14.74[s]로 전체 학습 시간대비 차이가 없었으며, 100 epoch 이하에서는 빠른 속도로 학습이 가능함을 알 수 있었다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-151-24-02-090072561