메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
고영진 (Tongmyong University) 김귀남 (Suncheon Jeil College) 김용현 (Chonnam National University) 이범 (Chonnam National University) 김경민 (Chonnam National University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제24권 제3호
발행연도
2020.9
수록면
883 - 889 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 논문에서는 CNN(Convolution Neural Network)을 이용한 유도전동기 고정자 고장진단에 PV(Park’s Vector)패턴을 특징으로 활용하는 방법을 제안하였다. 기존의 CNN을 이용한 유도전동기 고장진단 방법은 3상 전류를 이미지화하여 진단을 수행하였으나, 이 방법은 인위적으로 전류의 시작점, 위상 등을 맞춰 정규화를 수행해야하는 번거러움이 존재하나, PV패턴을 이용할 경우 일정 원의 패턴을 나타내기 때문에 정규화의 문제를 해결 할 수 있었다. 또한 PV패턴을 이용할 경우, 특징벡터가 자동적으로 정규화됨에 따라 기존의 전류데이터를 이미지화한 결과보다 CNN의 정확도 측면에서 18.18[%] 우수함을 실험을 통해 확인할 수 있었다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 실험 및 측정환경
Ⅲ. PV 패턴 추출
Ⅳ. CNN 적용
Ⅴ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0