메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Chenghong He (Nanjing University of Science and Technology) He-Jun Sun (Nanjing University of Science and Technology)
저널정보
대한수학회 대한수학회보 Bulletin of the KMS Vol.61 No.2
발행연도
2024.3
수록면
401 - 419 (19page)
DOI
10.4134/BKMS.b230126

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $K$, $H$, $K_{II}$ and $H_{II}$ be the Gaussian curvature, the mean curvature, the second Gaussian curvature and the second mean curvature of a timelike tubular surface $T_\gamma(\alpha)$ with the radius $\gamma$ along a timelike curve $\alpha(s)$ in Minkowski 3-space $E_{1}^3$. We prove that $T_\gamma(\alpha)$ must be a $(K,H)$-Weingarten surface and a $(K,H)$-linear Weingarten surface. We also show that $T_{\gamma}(\alpha)$ is $(X,Y)$-Weingarten type if and only if its central curve is a circle or a helix, where $(X,Y)$ $\in$ $\{(K,K_{II})$, $(K,H_{II})$, $(H,K_{II})$, $(H,H_{II})$, $(K_{II}$, $H_{II}) \}$. Furthermore, we prove that there exist no timelike tubular surfaces of $(X,Y)$-linear Weingarten type, $(X,Y,Z)$-linear Weingarten type and $(K,H,K_{II},H_{II})$-linear Weingarten type along a timelike curve in $E_{1}^3$, where $(X,Y,Z)\in\{(K,H,K_{II})$, $(K,H,H_{II})$, $(K,K_{II},H_{II})$, $(H$, $K_{II},H_{II})\}$.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0