메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
나영인 (고려대학교) 양승룡 (고려대학교)
저널정보
한국농식품정책학회(구 농업정책학회) 농업경영.정책연구 농업경영.정책연구 제51권 제1호
발행연도
2024.3
수록면
71 - 88 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In recent years a combination of factors such as extreme climate crisis, Russia’s invasion of Ukraine, and increased money supplies to combat against the economic slowdown due to the COVID-19 pandemic has led to a sharp increase in grain prices and, therefore, brought managerial risks to livestock farms. Understanding consumer behaviors related to meat consumption is essential for developing effective management strategies and appropriate policies for the livestock industry. This requires accurate and efficient estimations of the meat demand functions. The AIDS (Almost Ideal Demand System) type models are frequently used to analyze consumer behaviors in Korea. However, most meat demand estimations have applied restrictive assumptions such as source non-differentiation (or product aggregation) among product origins and/or block separability against other types of meat. This results in biased and inefficient estimates of consumer behaviors when the assumptions are not valid. This study analyzes the effects of the assumptions incorrectly imposed on the AIDS-type models for the estimation of the demand for meat in Korea. The Source Differentiated Inverse AIDS (SDIAIDS) model developed by Lee et al. (2013) is adopted as the most general model and the assumptions usually imposed are tested as the maintained hypotheses. Initially, we compared the price-dependent SDIAIDS model with the quantity-dependent SDAIDS model of Yang and Koo (1994) to select the more appropriate model for analysis of the meat demand in Korea. More appropriate estimates can provide more valuable information to enhance pricing and marketing strategies for livestock farms and policy makers.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0