메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최소영 (고려대학교) 조용성 (고려대학교)
저널정보
한국기후변화학회 한국기후변화학회지 Journal of Climate Change Research Vol.15 No.4
발행연도
2024.8
수록면
463 - 476 (14page)
DOI
10.15531/KSCCR.2024.15.4.463

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Due to frequent occurrences of abnormal weather caused by climate change, damages from natural disasters are increasing. In particular, typhoons account for 54.2% of the total damage and 57.8% of the total recovery costs in the country. As the frequency and intensity of typhoons invading the Korean Peninsula are increasing, accurate prediction of typhoon track and intensity is essential. However, typhoon intensity prediction technology has not improved significantly compared to typhoon track prediction. In this study, we investigated recent trends in typhoon research and development using keyword network analysis of domestic and international research papers from 2017 to 2021, and visualized the results with VOS viewer. As a result of the analysis, The trend of typhoon research is summarized into four clusters as follows: first, Cluster 1 represents the research on the prediction of tracking the typhoon patch, and intensity. Second, Cluster 2 represents studies of data assimilation and modeling based on observation data. third, Cluster 3 shows the research on the correlation between climate change and typhoons, and Cluster 4 are study of the interaction between typhoons and atmospheric circulation. In particular, the research topics of Cluster 1 are linked and expanded with the research topics of Cluster 2, Cluster 3, and Cluster 4. In order to improve the accuracy of typhoon prediction, further research needs to be conducted on various characteristics and intensity of typhoons due to climate change accordingly.

목차

ABSTRACT
1. 서론
2. 국내·외 태풍 연구동향 및 문헌분석
3. 연구방법 및 분석자료
4. 키워드 네트워크 분석 결과
5. 결론 및 제언
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090674529