메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Dan Huang (Pusan National University) Rakwon Kim (Pusan National University) Hokeun Sun (Pusan National University)
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제35권 제5호
발행연도
2024.9
수록면
691 - 702 (12page)
DOI
10.7465/jkdi.2024.35.5.691

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In analysis of high-dimensional data, penalized regression models have been commonly employed to select relevant variables. The most popularly used model is a least absolute shrinkage and selection operator, i.e., lasso. Recent studies proposed resampling-based methods to control the false discovery rate of variables selected by lasso. They include a data splitting method and a Gaussian mirror method. The former randomly splits samples into two different sets to estimate two independent coefficients for the same variable, while the later randomly generates Gaussian errors to construct a pair of variables and to estimate two different coefficients. Then, mirror statistics based on the coefficients estimated by each method were used for the error control. In this article, we proposed new approach to control FDR, combining a selection probability and a mirror statistic motivated by two resampling-based methods. In our simulation study, we demonstrated that the proposed approach controls FDR at a designated level better than other resampling-based methods while it maintains selection power. We also identified potentially cancer-related genes in analysis of microarray gene expression data from a breast cancer study.

목차

Abstract
1. Introduction
2. Method
3. Results
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0