메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Junhua Ye (Department of Neurosurgery, Nanfang Hospital, Southern Medical University) Qinguo Huang (Department of Neurosurgery, The Second Affiliated Hospital, Shantou University Medical College) Qiang Zhou (Department of Neurosurgery, Nanfang Hospital, Southern Medical University) Hong Li (Department of Neurosurgery, Nanfang Hospital, Southern Medical University) Lin Peng (Department of Neurosurgery, Nanfang Hospital, Southern Medical University) Songtao Qi (Department of Neurosurgery, Nanfang Hospital, Southern Medical University) Yuntao Lu (Department of Neurosurgery, Nanfang Hospital, Southern Medical University)
저널정보
대한척추신경외과학회 Neurospine Neurospine Vol.21 No.3
발행연도
2024.9
수록면
1,014 - 1,028 (15page)
DOI
10.14245/ns.2448622.311

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: Recent studies indicate that 3 morphological types of atlanto-occipital joint (AOJ) exist in the craniovertebral junction and are associated with type II basilar invagination (BI) and atlanto-occipital instability. However, the actual biomechanical effects remain unclear. This study aims to investigate biomechanical differences among AOJ types I, II, and III, and provide further evidence of atlanto-occipital instability in type II BI. Methods: Models of bilateral AOJ containing various AOJ types were created, including I-I, I-II, II-II, II-III, and III-III models, with increasing AOJ dysplasia across models. Then, 1.5 Nm torque simulated cervical motions. The range of motion (ROM), ligament and joint stress, and basion-dental interval (BDI) were analyzed. Results: The C0–1 ROM and accompanying rotational ROM increased progressively from model I-I to model III-III, with the ROM of model III-III showing increases between 27.3% and 123.8% indicating ultra-mobility and instability. In contrast, the C1–2 ROM changes were minimal. Meanwhile, the stress distribution pattern was disrupted; in particular, the C1 superior facet stress was concentrated centrally and decreased substantially across the models. The stress on the C0–1 capsule ligament decreased during cervical flexion and increased during bending and rotating loading. In addition, BDI gradually decreased across the models. Further analysis revealed that the dens showed an increase of 110.1% superiorly and 11.4% posteriorly, indicating an increased risk of spinal cord impingement. Conclusion: Progressive AOJ incongruity critically disrupts supportive tissue loading, enabling incremental atlanto-occipital instability. AOJ dysplasia plays a key biomechanical role in the pathogenesis of type II BI.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0