메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김용덕 (Yonsei University, South Korea) 이근철 (KCISBC, South Korea)
저널정보
한국무역연구원 무역연구 무역연구 제20권 제4호
발행연도
2024.8
수록면
1 - 17 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose – In most previous studies on predicting corporate failure, the main source of information for predictor variables is financial ratios on financial statements, and constructing a predicting model based on such accounting materials has several shortcomings. Therefore, the purpose of this study is to propose other sources of information, as well as accounting information, to examine the delisting risk factors and forecast corporate failure. Another purpose of this study is to present advanced statistical techniques of corporate failure. Design/Methodology/Approach – Most previous failure prediction studies have applied models analyzing cross-sectional data, including linear discriminant analysis, logit and probit models. This study employs a dynamic statistical model, specifically the GEE model. Findings – This stud y shows that audit opinion and credit assessment provide useful information for predicting corporate failure. It indicates that not only financial ratios but also variables with qualitative characteristics could serve for the corporate failure prediction model. It also shows that other delisting risk factors found empirically in this study are useful in examining and predicting corporate failure. Research Implications – This study contributes by analyzing the usefulness of audit opinion and credit assessment on the examination and the prediction of corporate failure. Moreover, the GEE model is an improvement from previous models by supplementing the shortcomings of the cross-sectional models in that the GEE model adequately reflect changes in time.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0