메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이한솔 (충남대학교, 忠南大學校 大學院)

지도교수
김인걸
발행연도
2016
저작권
충남대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
The aircraft such as high altitude long endurance unmanned aerial vehicle(UAV) and human powered aircraft(HPA) has high aspect ratio wing for lightweight structure and high lift-to-drag ratio. These wings can be deformed in flight. The displacement information of the deformed high-aspect-ratio wings is needed for the control effectiveness and real time monitoring of the structural responses. It is also needed to adjust the performance of conformal load bearing antenna structures (CLAS) system, which can be degraded because of wing deformation. It is hard to measure the deformed wing displacement directly. Wing deformation is able to be predicted based on the relationship between the strain on the wing skin and the displacement. Because the large wing deformation occur in flight, the displacement prediction considering geometric nonlinearity is required. Generally, the structural behaviors of aircraft wings are assumed as the behavior of beam. However the strain distribution of wings subjected to bending is complex in the chordwise direction. Therefore the deformations can be diversely predicted depending on chordwise locations of the strain sensing lines using the displacement prediction based on the strain-displacement relationship. Hence, the strain correction methods were proposed to improve the accuracy of the displacement prediction, regardless of the chordwise sensing position.
In this paper, the study on the spanwise strain correction are conducted to accurately predict the displacement by using nonlinear displacement prediction algorithm(NDPA). The ratio of the chordwise to spanwise strain, the ratio of the beam and plate strain, and Poisson''s ratio were used to correct spanwise strain. The strain and displacement were calculated by nonlinear finite element analysis (FEA).
The conclusions are as follows,
(1) If the wing structure shape and strain sensing position are chosen, we can conduct nonlinear finite element analysis before flight. Therefore, the strain ratio which are ratio of the chordwise to spanwise strain and coefficients of a quadric equation(a,b,c) to calculate strain calibration coefficient were calculated from FEA. Using these information, the spanwise strain can be corrected to improve accurate of predicted displacement.
(2) As simplified wing model, the plate and beam model were chosen. Considering real aircraft wings, the plate model under uniform and triangular distributed loads and tapered plate model also were chosen to verify the strain correction algorithm. In addition, experiments with the simplified wing model under concentrated load were conducted. The predicted displacement using the strain correction were consistent with those calculated by the FEA and measured by bending testing.
In the future, we expect that the study can be applied to improve the accuracy of the deformation prediction of wings in flight by using the data from FEA beforehand with NDPA that it not only uses minimum number of sensors but also has high accuracy.

목차

1. 서 론 1
1.1 연구 배경 및 필요성 1
1.2 연구 내용 3
2. 이론적 배경 4
2.1 선형변위예측이론 5
2.2 비선형 변위예측 알고리즘 6
3. 변형률 보정방법 9
3.1 변형률 보정의 필요성 9
3.2 변형률 보정식 10
3.2.1 변형률 민감도 10
3.2.2 변형률 보상방법을 이용한 변형률 보정 13
3.2.3 굽힘강성 보정값을 고려한 변형률 보정 14
3.3 변형률 교정계수 14
4. 단순날개시편의 변형률 보정 및 변위예측 16
4.1 연구모델 및 구조해석 16
4.1.1 연구모델 16
4.1.2 집중하중을 받는 구조물의 구조해석 17
4.2 변형률 보정 및 변위예측 24
4.2.1 변형률 보정식을 이용한 변형률 보정 24
4.2.2 변형률 보정식과 교정계수를 이용한 변형률 보정 31
4.3 구조실험 및 변형률 보정 37
4.3.1 실험장치 및 실험방법 37
4.3.2 변형률 보정을 위한 strain ratio와 교정계수 계산 39
4.3.3 실험결과 40
4.3.4 변형률보정 및 변위예측결과 41
5. 다양한 모델의 변형률 보정 및 변위예측 44
5.1 분포하중을 받는 구조물의 변위예측 44
5.1.1 연구모델 44
5.1.2 변형률 보정 및 변위예측 46
5.2 테이퍼 모델 56
6. 결 론 61
참고문헌 63
ABSTRACT 65

최근 본 자료

전체보기

댓글(0)

0