메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

최주연 (충남대학교, 忠南大學校 에너지科學技術大學院)

지도교수
장효식
발행연도
2016
저작권
충남대학교 논문은 저작권에 의해 보호받습니다.

이용수0

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
P-type wafer is generated B-O complex by implanting boron during manufacturing. B-O complex acts as a trap of electron-hole pair, and degrades the lifetime, efficiency of the solar cell. This phenomenon is called light induced degradation (LID). N-type wafer are less sensitive to impurities that are usually present in silicon feedstock and do not suffer from LID phenomenon caused by the simultaneous presence of boron and oxygen in the wafers. It has an advantage over P-type for its tolerance on high temperature process. And, it also tends to have lifetime about five times longer than P-type wafer. Consequently, N-type wafers with a high electrical quality can obtain high solar cell efficiency potential. Then, we used the N-type substrate. For boron emitter formation, it conducts pre-deposition and drive-in steps at boron doping process. For this experiment, N2, O2, and liquid BBr3 source will be used. We required that the sheet resistance was about 50 ohm/sq. and the uniformity was ~4%. And the boron rich layer (BRL) is formed between boron emitter and BSG(Borosilicate glass). The BRL has to control in order not to degrade carrier lifetime and reduce electrical properties. In this study, we investigated and compared two methods of in-situ oxidation and chemical etching treatment (CET) to remove the BRL. In-situ oxidation was followed by injecting oxygen of 1,000 sccm into the furnace during ramp down step and compared with CET using a mixture of acid solution of hydrofluoric acid (HF), nitric acid (HNO3) and glacial acetic acid (CH3COOH) with the ratio of 1:100:25 for a short time. Then, we analyzed passivation effect by depositing Al2O3 using atomic layer deposition (ALD). For the measurement of the sheet resistance, we used the 4-point probe. And the carrier lifetime and open-circuit voltage were measured by the quasi steady state photoconductance (QSSPC). The results gave a carrier lifetime of 110.9㎲, an open-circuit voltage (Voc) of 635mV at in-situ oxidation and a carrier lifetime of 188.5㎲, an Voc of 650mV at CET. As a result, CET shows better properties than in-situ oxidation because of removing BRL uniformly. In the future, we expects to produce high efficiency N-type silicon solar cells.

목차

제 1장. 서론 1
제 2장. 문헌 조사 4
2-1. 결정질 실리콘 태양전지의 구조 및 발전 원리 4
2-2. 태양전지의 특성 8
2-2-1. 단락전류 8
2-2-2. 개방전압 8
2-2-3. 곡선인자 11
2-2-4. 변환효율 13
2-2-5. 수집확률 14
2-2-6. 양자 효율 16
2-3. 결정질 실리콘 태양전지 18
2-3-1. P-type 결정질 실리콘 태양전지 18
2-3-2. N-type 결정질 실리콘 태양전지 19
2-4. Boron 확산 공정 22
2-4-1. Boron 확산 반응 22
2-4-2. Boron rich layer (BRL) 23
2-5. 원자층 증착법 (Atomic layer deposition, ALD) 25
제 3장. 실험 방법 28
3-1. 확산로 (Thermal furnace)를 이용한 에미터 형성 연구 28
3-1-1. 실험 재료 및 실험 방법 28
3-2. Boron rich layer (BRL) 제거 공정 연구 32
3-2-1. In-situ oxidation 32
3-2-2. Chemical etching treatment (CET) 34
3-3. Al2O3 증착을 통한 패시베이션 효과 연구 35
제 4장. 결과 및 고찰 38
4-1. 확산로를 이용한 에미터 형성 연구 38
4-2. Boron rich layer (BRL) 제거 공정 연구 41
4-2-1. In-situ oxidation 41
4-2-2. Chemical etching treatment (CET) 44
4-3. Al2O3 증착을 통한 패시베이션 효과 연구 46
4-3-1. In-situ oxidation 46
4-3-2. Chemical etching treatment (CET) 49
제 5장. 결론 52
참고문헌 55
영문 요약문 58
감사의 글

최근 본 자료

전체보기

댓글(0)

0