메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이종윤 (충남대학교, 忠南大學校 大學院)

지도교수
김병수
발행연도
2017
저작권
충남대학교 논문은 저작권에 의해 보호받습니다.

이용수0

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
n the grid generation, the shape modeled in the CAD system is transmitted to the program in the STL data format, and the shape definition is performed. However, there is a problem that the curvature information of the original shape is lost in the process of transmitting the data to the program in the STL data format. In addition, in the case of a shape having many curved surfaces, a mesh having a non-smooth surface is generated in the process of generating a mesh. In order to solve this problem, we have studied the approximate curvature recovery of the surface mesh for 3D flow field calculation. In CAD system, the modeled shape was called in STL format to create the surface grid, and the surface grid was segmented to have the desired grid size using the Barycentric coordinates. The approximate curvature recovery for the curved surface was Bezier triangular surface. Curvature recovery creates a curved surface for each cell, Along-edge recovery, in which the curvature is restored along the edges of the grating, and cross-edge recovery, in which the curvature is restored such that neighboring faces have a continuous gradient. The surface mesh generated by the approximate curvature recovery was performed using the Panel Method program for verification and the surface mesh close to the original shape was generated. In this study, it is expected that more accurate analysis results will be obtained if the grid is generated using the surface generated by the approximate curvature recovery.

목차

목 차
List of Table ii
List of Figure iii
1. 서론 1
1.1. 연구 배경 1
1.2. 관련 연구 동향 1
1.3. 연구 목표 2
2. 이론적 배경 3
2.1. STL 3
2.2. 무게중심좌표 4
2.3. Bezeir Surface 5
2.4. Panel Method 8
3. 프로그램 10
3.1. 프로그램 개발 환경 10
3.2. 형상데이터 불러오기 11
3.3. 삼각형 표면격자의 분할 12
3.4. 표면격자의 근사적 곡률 회복 13
3.4.1. Triangular Bezier Surface 13
3.4.2. Along-Edge 곡률 회복 14
3.4.3. Cross-Edge 곡률 회복 15
3.4.4. STL 데이터의 Resolution에 따른 곡률 회복 16
3.5. Panel Method 계산을 위한 Panel 격자 생성 18
4. Panel Method를 이용한 표면격자의 검증 20
4.1. Apame 20
4.2. 표면격자의 검증 21
4.2.1. Sphere 21
4.2.2. Ellipsoid 24
4.2.3. Wing 26
5. 결론 31
참고문헌 33
ABSTRACT 34

최근 본 자료

전체보기

댓글(0)

0