메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김기준 (忠南大學校, 忠南大學校 大學院)

지도교수
석진영
발행연도
2017
저작권
忠南大學校 논문은 저작권에 의해 보호받습니다.

이용수15

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
The purpose of this dissertation is to develop a guidance and control algorithms for stable and automatic operation of a fixed-wing unmanned aerial vehicle on a moving aircraft carrier. So, this paper investigates that the sea state has analyzed conditions for suitable operating a UAV. The sea state is divided into nine levels, and each level determines the significant wave height and sustained wind speed. This paper has considered ship motion in sea state level five. This sea state level five account for about 80% of the total sea environment. In this conditions, the movement of the ship is simulated by using the MSS hydro toolbox. It is assumed that the ship moves at the 15 m/s in a forward direction velocity under the wave incident angle of 30 degrees, using the S-175 ship model. In these conditions, the landing point is constantly changing due to the ship’s heave and pitching motions. Also, the position of the landing point is offset from the center of gravity of the ship. Therefore, it should be calculated considering the center of gravity of the ship and the offset of the landing point. It is applied to the simulation considering the precondition. The simulation is performed using the MQ-9(reaper) class UAV model. This UAV is modeled based on the X-plane simulator MQ-9 model. At this time, aerodynamic coefficient data are obtained using DATCOM. Using aerodynamic data and geometry parameters, a 6-DOF nonlinear model is constructed and using this model make a linear model. The linearization model is used for the design of the linear controller and the dynamic inversion controller.
The guidance and control are conducted based on the movement of the current landing point to the continuously moving ship. However, the probability of landing failure increases if the abrupt movement occurs of the ship just before landing. Therefore, prediction of the landing point is proposed for UAV guidance in order to cope flexibly with the sudden ship motions using NARX. The NARX learns the input and output relationship of time series data, which performs the prediction of ship motions.
The guidance and controller are designed to land at the predicted point. As the inner loop control law, the LQTI linear optimal controller and neural network adaptive controller are designed. The LQTI controller is based on the LQR controller with a tracker term and an integrator term added. The neural network controller based on dynamic inversion with the adaptive signal compensates for the inversion error. The guidance law is designed for each axis on the longitudinal and lateral axis. The longitudinal guidance law applies the line-of-sight and the glideslope guidance. Also, lateral guidance law applies the nonlinear path following guidance and the track guidance. Comparative simulations are performed by applying the designed various guidance laws and controllers.
The integrated simulation environment considers wind condition, ocean environment (sea state), ship dynamic motions, prediction of the landing point, guidance laws and controllers. A total of thirty-two conditions is compared. Each case consists of thirty times of Monte-Carlo simulations with changing the initial conditions. From the simulation results, the landing success rate and landing point accuracy are analyzed. When the prediction guidance is applied, simulation results manifest that the landing success rate and landing accuracy are increased.

목차

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .i
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . .iv
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . .v
Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . .x
1 서론 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.1 연구 동기 . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.2 선행 연구 . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1.3 문제 정의 . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.4 연구 내용 . . . . . . . . . . . . . . . . . . . . . . . . . . .8
1.5 논문 구성 . . . . . . . . . . . . . . . . . . . . . . . . . . .10
2 함상 운용 시뮬레이션 환경 및 모델링 . . . . . . . . .11
2.1 해상 상태(Sea state) . . . . . . . . . . . . . . . . . . . . .11
2.2 함정 운동 모델(MSS hydro toolbox) . . . . . . . . . . . .13
2.2.1 MSS Hydro Toolbox 시뮬레이션 . . . . . . . . . . .15
2.3 무인항공기 모델 . . . . . . . . . . . . . . . . . . . . . . .24
2.3.1 MQ-9 모델 . . . . . . . . . . . . . . . . . . . . . . .24
3 예측 필터 설계 . . . . . . . . . . . . . . . . . . . . . . . .29
3.1 Nonlinear AutoRegressive eXogenous(NARX) 신경회로망 . .30
3.1.1 단일 입/출력 NARX . . . . . . . . . . . . . . . . . .32
3.1.2 다중 입력 단일 출력 NARX . . . . . . . . . . . . . .38
3.1.3 다중 입/출력 NARX . . . . . . . . . . . . . . . . . .43
4 유도/제어 기법 . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1 내부 제어기 설계 . . . . . . . . . . . . . . . . . . . . . . .57
4.1.1 LQTI 선형 최적 제어기 설계 . . . . . . . . . . . . .59
4.1.2 역변환 제어기 설계 . . . . . . . . . . . . . . . . . .61
4.1.3 역변환 제어기 구조 . . . . . . . . . . . . . . . . . .63
4.1.4 신경망 적응제어기 설계 . . . . . . . . . . . . . . . .66
4.1.5 제어기 파라미터 . . . . . . . . . . . . . . . . . . . .68
4.1.6 속도 제어기 설계 . . . . . . . . . . . . . . . . . . .69
4.2 종/횡축 유도 기법 설계 . . . . . . . . . . . . . . . . . . .70
4.2.1 종축 유도 기법 . . . . . . . . . . . . . . . . . . . . .70
4.2.2 횡축 유도 기법 . . . . . . . . . . . . . . . . . . . . .73
4.2.3 예측을 고려한 유도 기법 구성 . . . . . . . . . . . .77
4.3 수치 시뮬레이션 . . . . . . . . . . . . . . . . . . . . . . .79
4.3.1 기준 입력 및 바람 환경 . . . . . . . . . . . . . . . .79
4.3.2 NNC 시뮬레이션 결과 (Case 1 - Case 4) . . . . . . .81
4.3.3 LQTI 시뮬레이션 결과 (Case 5 - Case 6) . . . . . . .89
4.3.4 제어기 성능평가 . . . . . . . . . . . . . . . . . . . .93
5 통합 시뮬레이션 . . . . . . . . . . . . . . . . . . . . . . . . . .95
5.1 시뮬레이션 조건 및 착륙판단 조건 . . . . . . . . . . . . .96
5.1.1 시뮬레이션 조건 . . . . . . . . . . . . . . . . . . . .96
5.1.2 착륙판단 조건 . . . . . . . . . . . . . . . . . . . . .98
5.2 바람이 없는 조건 시뮬레이션 . . . . . . . . . . . . . . . .99
5.2.1 LQTI 제어기 . . . . . . . . . . . . . . . . . . . . . .99
5.2.2 신경회로망 제어기 . . . . . . . . . . . . . . . . . . 106
5.3 바람이 있는 조건 시뮬레이션 . . . . . . . . . . . . . . . . 113
5.3.1 LQTI 제어기 . . . . . . . . . . . . . . . . . . . . . . 113
5.3.2 신경회로망 제어기 . . . . . . . . . . . . . . . . . . 120
5.4 종합 고찰 . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6 결론 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

최근 본 자료

전체보기

댓글(0)

0