지원사업
학술연구/단체지원/교육 등 연구자 활동을 지속하도록 DBpia가 지원하고 있어요.
커뮤니티
연구자들이 자신의 연구와 전문성을 널리 알리고, 새로운 협력의 기회를 만들 수 있는 네트워킹 공간이에요.
이용수3
1. Introduction 11.1 Overview 11.2 Literature Survey 41.3 Contribution Of Thesis 81.4 Thesis Outline 102. Optimal Linear Filtering 112.1 Batch Least-Squares Estimation 112.2 Weight Least-Squares Estimation 142.3 Recursive Least-Squares Estimation 162.4 Kalman Filter 202.4.1 Algorithm Of KF 213. Suboptimal Nonlinear Filtering 273.1 Nonlinear Least-Square Estimation 273.2 Extended Kalman Filter 323.3 Unscented Kalman Filter 353.3.1 Unscented Transformation 353.3.2 Scaled Unscented Transformation 373.3.2 Standard Unscented Kalman Filter 394. Adaptive Filtering 444.1 Introduction 444.2 Optimality Conditions Of Kalman Filter 474.3 Moving Average Window Method 494.4 Generalized Adaptive UKF Algorithm 515. Application To Pendulum On Slider System 555.1 Pendulum On Slider System 555.1.1 Experimental System 565.1.2 Derivation Of Dynamic Equation 575.1.3 Derivation Of State-Space Matrix 615.1.4 Augmented State-Space Matrix 626. Numerical Simulation 636.1 Simulation Setup 636.2 Simulation Results 666.3 Monte Carlo Numerical Simulation 696.4 Numerical Simulation For Signal To Noise Ratio 716.5 Numerical Simulation About Window Size 746.6 Numerical Simulation About Computation Time 777. Experiments 797.1 Data Acquisition System 817.2 Experimental Setup 827.3 Estimation Results Of Experiments 838. Conclusion 90References 92
0