메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이재청 (충남대학교, 忠南大學校 大學院)

지도교수
허환일
발행연도
2020
저작권
충남대학교 논문은 저작권에 의해 보호받습니다.

이용수18

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
The characteristics around counterflow jets are difficult to predict due to the many variables. The effects of drag reduction using counterflow jets under various conditions have been investigated by a computational and experimental effort. In order to analyze the counterflow jets with different freestreams, a numerical simulation was conducted by solving a two-dimensional axisymmetric RANS equation. In a short penetration mode, the trends of drag reduction with the freestream conditions (altitude: 10 to 19 km, M∞: 2.0 to 4.0) were reviewed. The experiments were performed under two freestream conditions (M∞ = 3.8, M∞ = 7). The effects of drag reduction under different nose shape were investigated by using the blowdown supersonic wind tunnel of Mach number 3.8 at Chungnam national university, and the Mach 7 hypersonic shock tunnel was used to analyze the effect of drag reduction by plasma jet.
According to the results of the numerical analysis, the difference in the overall flow structure arises from the freestream Mach number. The recirculation zone is the key feature of the flow. From the mechanism of the flow, the recirculation zone is affected by the velocity and pressure at the boundary. And the position and pressure of the reattachment point are the main parameters representing the recirculation zone. The cause of the difference in the flow structure depending on the freestream Mach number can be explained by these parameters.
Plasma jets have a general tendency of drag reduction with nozzle thrust for freestream Mach number under conditions the flow satisfies the steady state. Plasma acts as a high thermal energy in a counterflow jets. Plasma generated by electrical energy causes the temperature of the cold gas to rise. If the cold gas and plasma are the same injection pressure, the plasma jets are injected at a relatively low mass flow rate. The plasma jets have higher nozzle thrust at the same mass flow rate and pressure. Therefore, the plasma jets can achieve a corresponding drag reduction at low flow rates when compared to gas at room temperature due to the mass flow rate decreasing with temperature.
When the injection condition and the freestream Mach number are determined in a counterflow jets in which the flow field satisfies the steady state, there is a maximum point of drag reduction depending on the injection condition. Derivation of the maximum point of drag reduction in stable flow is a meaningful result when considering practical implementation of counterflow jets. This tendency of the maximum drag reduction fully demonstrates the possibility of the application of a counterflow jets to a high-speed vehicle. In addition, it is advantageous to operate at a high altitude because the low injection pressure is effective for the application of a vehicle.

목차

1. 서 론 1
1.1. 연구 배경 1
1.2. 연구 동향 5
1.3. 연구 목표 및 내용 15
2. 이론적 고찰 18
2.1. 압축성 유동 18
2.2. 노즐 유동[52] 23
3. 수치해석 27
3.1. 전산수치해석 모델 27
3.2. 전산수치해석 모델링 28
3.3. 격자 민감도 분석 및 검증 29
4. 실험장치 및 방법 35
4.1. Mach 3.8 초음속 풍동 35
4.2. Mach 7 극초음속 충격파 터널 39
4.2.1. 시험장치의 구성 39
4.2.2. 플라즈마 발생장치 43
4.2.3. 극초음속 충격파 터널에서 항력 측정 57
4.3. 측정 불확도[63,64] 69
5. 결과 및 분석 75
5.1. 역분사 유동에 의한 항력감소 경향성 75
5.1.1. 제트 추력에 따른 효과 75
5.1.2. 자유유동 압력과 마하수에 다른 효과 76
5.1.3. 역류 유동에 의한 상세한 유동 특성 82
5.1.4. 유동 특성과 항력 감소 관계 89
5.2. 역분사 제트에 의한 효과 98
5.2.1. 분사 노즐 직경의 효과 98
5.2.2. 선두부 형상에 따른 효과 103
5.2.3. 모델 크기에 따른 효과 107
5.2.4. 플라즈마에 의한 효과 114
6. 결 론 133

최근 본 자료

전체보기

댓글(0)

0