식품의 품질은 안전성, 영양성, 기호성, 및 기능성 등 여러 가지 요인에 따라 달라질 수 있으며, 그 중에서도 관능적 특성인 맛과 향은 소비자들이 식품을 선택하는 데에 가장 큰 영향을 미친다. 한약재 발효는 단일 균주를 가지고 최적의 배양조건을 개발하여 한약재를 발효하는 방식을 말하는 것으로, 생약재를 발효시키면 미생물에 의해 고분자구조의 물질이 저분자 구조로 분해되어 체내 흡수율이 높인다. 또한 발효 과정에서 생리활성물질이 풍부하게 생성되어 생체 이용률을 증대시키기 때문에 신기능 소재로서 활용 가치가 있다. 이에 본 연구에서는 천연물인 천마와 울금의 불쾌한 향과 맛으로 인한 사용의 한계점을 개선하기 위하여 미생물 발효를 활용하여 관능적 기호도와 이용성을 증대시키고자 했다. 더불어 이러한 발효물질인 발효천마와 발효울금의 항산화 및 항염증 효능을 검증하여 기능성 식품소재를 개발하고자 했다. 본 연구에서 천마는 L. brevis E3-8 균주를 그리고 울금은 R. oryzae CN 105 균주를 사용하여 발효천마와 발효울금을 얻을 수 있었다. 이러한 발효 물질의 관능적 기호도 증대 효과를 확인하기 위하여 향기성분 분석과 맛센서 분석을 수행했다. 또한, 발효물질의 항산화평가를 위하여 총 폴리페놀, 플라보노이드 함량, 및 DPPH 소거능을 확인했으며, 지표성분 검출을 위해 HPLC분석을 수행했다. 항 염증 평가를 위해서는 RAW264.7 세포에서 LPS 유도 염증유발 모델을 구축했으며 발효천마 및 발효울금의 염증 개선 효과를 확인했다. 그 결과, 천마의 향기성분은 비발효천마에서는 2-oxo methyl ester, p-Cresol, Phenylethyl Alcohol, 및 Diethylene glycol 등 16종이 검출되었고, 발효가 진행됨에 따라 phenol과 ester계열의 향기성분이 감소를 보였다. DPPH 소거능에서는 비발효천마와 발효천마에서 40% 비슷한 정도의 활성을 보였고, 총 폴리페놀과 플라보노이드 함량은 비발효천마보다 발효천마에서 높은 활성을 보였다. 천마의 지표성분으로 gastrodin, gastrodigenin, vanillyl alcohol, 4-hydroxy benzyl alcohol, vanillin를 분석한 결과 비발효천마에서 보다 발효천마에서 성분함량이 증가함을 보였다. 발효천마 80% 에탄올 추출물의 10, 50, 및 100 μg/ml 모든 농도에서 세포독성이 나타내지 않았다. RAW264.7 세포에 LPS로 유도된 염증인자인 NF-κB, IL-6, 및 TNF-α 생성량이 발효천마의 염증인자 생성억제를 평가한 결과 NF-κB와 IL-6에서 발효천마 100 μg/ml에서 현저히 생성량이 억제되었다. LPS로 유도된 cytokines 억제효과를 보인 발효기간별 발효천마(100 μg/ml)의 NO, PGE2 생성억제를 평가한 결과, 대조군과 비교해 LPS를 처리한 군에서 NO, PGE2의 생성이 현저히 증가되었고, 발효천마에 의해 유의성 있는 생성억제효과를 보였다. 울금의 발효기간에 따른 맛의 차이는 울금의 발효가 진행될수록 쓴맛, 떫은맛, 짠맛, 감칠맛이 감소하는 반면 신맛은 증가하는 것으로 나타났다. 따라서 쓴맛과 떫은맛의 감소로 인하여 울금의 기호도가 향상될 가능성이 있을 것으로 기대되었다. DPPH 소거능에서는 비발효울금의 전자공여능은 87.23%로 높은 항산화능을 보였고, 발효울금 1일차의 전자공여능이 92.47%로 가장 높은 항산화능을 보였다. 총 폴리페놀과 플라보노이드 함량의 측정 결과, 비발효울금의 함량은 각각 27.05 mg/g, 7.47 mg/g을 나타내었고, 발효울금 1일차에는 폴리페놀 함량이 42.91 mg/g 플라보노이드 함량이 10.33 mg/g으로 가장 높았으며, DPPH radical 소거능과도 유사한 결과를 보였다. 발효울금의 80% 에탄올 추출물에 존재하는 α-glucosidase저해활성과 α-amylase 저해활성은 10 mg/ml의 농도에서 측정한 결과, 발효에 의해 α-glucosidase 저해율이 증가함을 보였다. α-amylase 저해활성은 비발효울금에 81.60%, 발효울금 1일차에 84.05%, 발효울금 2일차와 발효울금 3일차에서 각각 83.19%와 82.71%로 71.20%의 acarbose보다 높은 저해활성을 보여 혈당강하효과의 물질로 기대할 수 있게 한다. 또한 발효울금 80% 에탄올 추출물은 α-glucosidase에 대한 저해 활성 보다는 α-amylase 저해 활성능이 더 큰 것으로 나타났다. 발효울금 80% 에탄올 추출물의 10, 50, 및 100 μg/ml 모든 농도에서 세포독성이 나타내지 않았다. RAW 264.7 세포에 LPS로 유도된 염증인자인 NF-κB, IL-6와 TNF-α 생성량이 발효 기간별 발효 울금의 염증인자 생성억제를 평가한 결과 NF-κB와 IL-6에서 발효 울금 100 μg/ml에서 현저히 생성량이 억제되었다. LPS로 유도된 cytokines 억제효과를 보인 발효 기간별 발효 울금 (100 μg/ml)의 NO, PGE2 생성억제를 평가한 결과, 대조군과 비교해 LPS를 처리한 군에서 NO, PGE2의 생성이 현저히 증가되었고, 울금 에탄올 추출물에 의해 유의성 있는 생성억제효과를 보였고 비발효울금에 비해 발효울금의 생성억제 효과를 보였다. 또한 COX-2와 iNOS의 단백질 발현 억제효과를 확인한 결과, 대조군과 비교해 LPS에 의해 증가된 COX-2와 iNOS의 단백질발현이 발효 울금에 의해 감소됨을 확인하였다. 위 결과 발효울금은 RAW 264.7 세포에서 LPS에 의해 유도되는 NO와 PGE2의 생성억제, iNOS와 COX-2의 발현을 억제시켰으며, NF-κB, IL-6와 TNF-α의 분비량도 억제시켰다. 결론적으로, 미생물을 이용하여 얻은 발효천마와 발효울금은 본래 약재가 가진 관능적 기호도를 상승시킬 수 있었으며, 이러한 발효물질들은 항산화 항염증 효능이 있음을 확인할 수 있었다. 따라서 이러한 결과는 발효천마와 발효울금은 항산화 및 항염증 개선 천연물 개발을 위한 기초자료로 활용될 수 있을 것이라 사료된다.
Food quality should depend on several factors such as safety, nutrition, palatability, and functionality. Among them, palatable taste and aroma are sensory characteristics and have the most significant influence on consumers’ choice of food. Herbal medicine fermentation is a method of fermenting herbal medicines by developing optimal culture conditions with a single strain. When herbal medicines are fermented, high molecular weight substances are decomposed by microorganisms into low molecular weight structures, which increases the absorption rate in the body and is rich in physiologically active substances during fermentation. It has the value of being used as new functional material by increasing bioavailability. Therefore, in this study, to improve the limitations of use due to the unpleasant smell and taste of natural products, schema, and turmeric, microbial fermentation was used to increase the sensory preference and usability. In addition, a study was conducted to verify the antioxidant and anti-inflammatory effects of fermented Gastrodia elata (GE) and fermented Curcuma longa (CL). In this study, fermentation was used to develop functional food materials that help antioxidant and anti-inflammatory through microbial fermentation, improving the flavor of medicinal herbs, and enhancing ingredients. Gastrodia elata was fermented with L. brevis E3-8 strain, and Curcuma longa was fermented with R. oryzae CN 105 strain. These fermented substances were subjected to fragrance component analysis and taste sensor analysis to confirm the effect of increasing sensory preference. In addition, total polyphenol, flavonoid content, and DPPH scavenging ability were verified for antioxidant evaluation of fermented materials, and HPLC analysis was performed to detect indicator components. For anti-inflammatory evaluation, an LPS-induced inflammation-inducing model was established in RAW264.7 cells, and the anti-inflammatory effect of fermented GE and fermented CL was confirmed. Meanwhile, as a result, 16 types of fragrance components such as 2-oxo methyl ester, p-Cresol, Phenylethyl alcohol, and diethylene glycol were detected in non-fermented GE. As fermentation proceeded, phenol and ester-based fragrance components decreased. In DPPH scavenging ability, unfermented and fermented GE showed about 40% similar activity, and total polyphenols and flavonoids showed higher activity in fermented GE than unfermented GE. As a result of analyzing gastrodin, gastrodigenin, vanillyl alcohol, 4-hydroxy benzyl alcohol, and vanillin as indicator components of fermented GE, it was shown that the component content was increased in fermented GE than in unfermented GE. In addition, the fermented GE 80% ethanol extract showed no cytotoxicity at all concentrations of 10, 50, and 100 μg/ml. Increased production of NF-κB, IL-6, and TNF-α, NO, and PGE2 induced by LPS in RAW264.7 cells showed significant inhibition in fermentation GE. As for the difference in taste according to the fermentation period of CL, the bitterness, astringency, saltiness, and umami taste decreased as the CL fermentation progressed, while the sour taste increased. Therefore, it is judged that there is a possibility of improving the taste because fermentation of CL reduces bitterness and astringency. The DPPH free radical scavenging activity of non-fermented CL and fermented CL was 87.23%, 89.48%, 91.97%. The highest activity (92.47%) was shown on the first day of fermented CL. Total polyphenols and total flavonoids, the content of non-fermented CL was 27.05 mg/g and 7.47 mg/g, respectively, and on the first day of fermentation CL, the polyphenol content was 42.91 mg/g, and the flavonoid content was the highest at 10.33 mg/g, and the DPPH radical scavenging activity was also showed similar results. The α-glucoside inhibitory activity and α-amylase inhibitory activity of fermented CL were determined at concentrations of 10 mg/ml, indicating that the α-glucoside inhibitory rate increased by fermentation. The α-amylase inhibitory activity was 81.60% for non-fermented CL, 84.05% for fermented CL on the first day, 83.19% on the second day, 82.71% on the third day, and 71.20% higher than acarbose. In addition, it was found that the inhibitory activity of α-amylase was greater than that of α-glucoside. Curcumin, BMC, and DMC, which are indicator components of CL, increased more in fermented CL than in non-fermented CL. In addition, the increased production of NF-κB, IL-6, and TNF-α, NO, PGE2, iNOS, and COX-2 by LPS in RAW264.7 cells were significantly suppressed in fermented CL than in non-fermented CL. In conclusion, fermented GE and fermented GL obtained using microorganisms increased the sensory preference of the original medicine, and it was confirmed that these fermented substances have antioxidant and anti-inflammatory effects. Therefore, it is considered that these results could be used as primary data for the development of natural products with improved antioxidant and anti-inflammatory properties of fermented GE and fermented CL.
1. INTRODUCTION 52. MATERIALS & METHODS 82. 1. Plant material and fermentation starter 82. 2. Preparation of Fermented Gastrodia elata (GE) 82. 3. Preparation of Fermented Curcuma longa (CL) 92. 4. Physicochemical Characteristics 102. 4. 1. Measurement of Moisture content, pH, Total acid and Color values 102. 4. 2. Analysis of Reducing sugar and Free sugar 102. 4. 3. Analysis of Free Amino Acid 112. 4 .4. Analysis of Volatile Flavor Compounds 112. 4. 5. Taste sensing analysis 112. 4. 6. HPLC analysis of Fermented Extract 122. 5. Measurement of Antioxidant and Antidiabetic activities 132. 5. 1. Measurement of DPPH radical scavenging activity 132. 5. 2. Measurement of Total Polyphenols and Total Flavonoids 132. 5. 3. Measurement of α-Glucosidase inhibitory activity 142. 5. 4. Measurement of α-Amylase inhibitory activity 142. 6. Anti-inflammatory effects of LPS-induced inflammatory mediators inRAW264.7 cells 152. 6. 1. Cell cultures 152. 6. 2. Cell viability assay using MTT 152. 6. 3. NF-κB Activity Assays 162. 6. 4. Enzyme-linked immunosorbent assays (ELISA) 162. 6. 5. Measurement of nitrite production using Griess reagent 162. 6. 6. Measurement of PGE2 production by enzyme immunoassay 172. 6. 7. Reverse transcription-PCR (RT-PCR) analysis 172. 6. 8. Western blot assay 182. 7. Statistical analysis 193. RESULTS - Chapter I 20Effects of Sensory Characteristics and Anti-inflammatory and Antioxidant Activities in Fermented Gastrodia elata by L. brevis E3-83. 1. Physicochemical characteristics 213. 1. 1. Changes in moisture, pH, total acidity, Reducing sugar and Color values 213. 1. 2. The Free sugar content of GE and FGE 223. 1. 3. The Free amino acid content of GE and FGE 233. 1. 4. HPLC analysis of GE and FGE 233. 1. 5. Volatile Flavor Compounds of GE and FGE 243. 2. Effect of GE on Antioxidant activities 253. 2. 1. DPPH Radical scavenging activity of GE and FGE 253. 2. 2. Total Polyphenols and Total Flavonoids activity of GE and FGE 253. 3. Effect of GE on Anti-inflammatory 263. 3. 1. Effect of GE and FGE on cell viability 263. 3. 2. Effect of GE and FGE on LPS-induced NF-κB, IL-6 and TNF-α Expressions in RAW264.7 cells 263. 3. 3. Effect of GE and FGE on LPS-induced NO production and iNOS expressions in RAW264.7 cells 273. 3. 4. Effect of GE and FGE on LPS-induced PGE2 production and COX-2 Expressions in RAW264.7 cells 283. RESULTS - Chapter II 43Effects of Sensory Characteristics and Anti-inflammatory and Antioxidant Activities in Fermented Curcuma longa by R. oryzae CN 1053. 4. Physicochemical characteristics 443. 4. 1. Changes in moisture, pH, total acidity, Reducing sugar and Color values 453. 4. 2. The Free sugar content of CL and FCL 453. 4. 3. The Free amino acid content of CL and FCL 453. 4. 4. Taste sensing analysis of CL and FCL 463. 4. 5. HPLC analysis of CL and FCL 463. 5. Effect of CL on Antioxidant and Antidiabetic activities 473. 5. 1. DPPH Radical scavenging activity of CL and FCL 473. 5. 2. Total polyphenols and Total flavonoids activity of CL and FCL 473. 5. 3. α-Glucosidase inhibitory activity of CL and FCL 473. 5. 4. α-Amylase inhibitory activity of CL and FCL 483. 6. Effect of CL on Anti-inflammatory 483. 6. 1. Effect of CL and FCL on cell viability 483. 6. 2. Effect of CL and FCL on LPS-induced NF-κB, IL-6 and TNF-α expressions in RAW264.7 cells 493. 6. 3. Effect of CL and FCL on LPS-induced NO production and iNOS expressions in RAW264.7 cells 493. 6. 4. Effect of CL and FCL on LPS-induced PGE2 production and COX-2 expressions in RAW264.7 cells 504. Discussion 66