메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

장성호 (창원대학교 )

지도교수
함승호
발행연도
2023
저작권
창원대학교 논문은 저작권에 의해 보호받습니다.

이용수4

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
After the hull variation, the ship''s compartment design is carried out to create necessary spaces such as cargo tanks, ballast tanks, and fuel tanks, taking into account the shipowner''s requirements, regulations, and types of cargo, and to calculate whether the volumes of the compartments are similar to those estimated through the performance line. Subsequently, it is calculated whether the regulations related to the partition design are satisfied. Depending on the conditions of each ship''s operation, the ship''s posture and external force are calculated according to the amount of displacement under the draft line, the volume of the compartment, the cargo loading, etc. to check whether the restoration performance is satisfied in case of intact and damage stability according to the ship regulations. If each condition is not met in the design process, design changes are made to the hull or to the compartment model, and the process of performing the ship calculation is repeated to produce a final result when all requirements are met.
Current parcel design requires an understanding of ship regulations based on the company''s internal baseline and a deep understanding of the high difficulty and 3D space of the script-based existing parcel design program, so the designer''s experience is very important. In the case of unskilled people, it takes a lot of time to put into work and perform practical tasks. In addition, the number of design personnel at shipyards is gradually decreasing, and the opportunity for unskilled people to learn compartment design from skilled designers is gradually decreasing.
In the case of NAPA, an existing ship compartment design program mainly used in shipyards, surface-based compartment modeling is conducted, but in actual calculation, the cross-sectional area is calculated by integrating wire frames densely cut in the longitudinal direction using Simpson''s Rule, and then calculating the cross-sectional area value again in the same way. Therefore, errors occur in the corresponding process.
In this study, a three-dimensional solid-based optimal compartment design system was developed to solve this problem. First, we developed a three-dimensional solid-based spatial modeling function and an arithmetic function for spatial modeling. Using the Boolean operation, complex ship compartments can be defined. Second, the functions of calculating hydrostatics, calculating tank capacity, and calculating the equilibrium posture of the ship, which correspond to the basic calculation of the ship, were developed. Third, in consideration of the characteristics of each ship type, the design problem of the tanker''s cargo warehouse compartment was formalized, and this was formalized as an optimization problem. A program with a visualization and analysis GUI was developed using the developed function. After that, the error of the functions was confirmed by comparing with the existing program, and the optimization problem was applied to Suezmax Tanker.

목차

목 차 ⅰ
표 목차 ⅴ
그림 목차 ⅵ
Ⅰ. 서 론 1
1. 연구의 배경 1
2. 선행 연구 3
3. 연구 내용 5
Ⅱ. NAPA 기능 분석 6
1. NAPA 자료구조 6
2. NAPA 구획모델링 방법 7
1) Reference 설정 7
2) Room 정의 8
(1) 변수 지정 8
(2) Room 정의 방법 8
(3) Stabhull 정의 9
3) Arrangement 정의 10
3. NAPA 선박 계산 방법 11
1) Hydrostatics 계산 11
2) Lightweight 정의 12
3) Loading Condition 정의 13
4. NAPA Designer 13
5. NAPA 분석 16
1) NAPA의 장점 16
2) NAPA의 단점 16
6. 연구 및 개발 방향 설정 17
Ⅲ. 3차원 솔리드 공간 모델링 및 기본 계산 시스템 18
1. 3차원 솔리드 기반의 공간 모델링 18
1) 구획 모델링 자료구조 정의 18
(1) 솔리드 모델링 적용 18
(2) 구획 모델링 자료 구조 19
2) 구획 모델 정의 19
(1) 구획 모델 정의 방법 19
(2) 다양한 형태의 구획 모델 정의 22
3) Boolean 연산 25
4) Split 연산 26
2. 기본 계산 시스템 28
1) 선박의 기본 계산을 위한 자료 구조 28
(1) Ship 28
(2) Reference Information 28
(3) Hydrostatics 29
(4) Hull Form 29
(5) Arrangement 29
(6) TankGroup 29
(7) Loading 29
(8) TankCategory 29
2) 선박 계산 기능 30
(1) Hydrostatics Calculation 30
(2) Tank Capacity 31
(3) Equilibrium Posture Calculation 31
Ⅳ. 유조선의 화물창 최적화를 위한 문제 정식화 34
1. 최적화 문제 34
2. 유조선의 화물창 설계 방법 36
3. 설계 변수 38
4. 목적 함수 39
5. 제약 조건 39
1) 선수격벽에 대한 규정 40
2) 분리 평형수 탱크에 대한 규정 41
3) 이중저, 이중선체에 대한 규정 41
4) 사고로 인한 기름 유출에 대한 규정 42
6. 정리 44
7. NSGA-Ⅱ 알고리즘 45
Ⅴ. 최적 구획 설계 시스템 46
1. 프로그램 구성도 46
2. 최적 구획 설계 프로그램 개발 47
3. 적용 51
1) Panstadream호 구획 설계 및 검증 51
2) NapaContainer 구획 설계 및 검증 53
3) Suezmax Tanker 최적 구획 배치 56
Ⅵ. 결론 61
참고문헌 63
Abstract 65

최근 본 자료

전체보기

댓글(0)

0