지원사업
학술연구/단체지원/교육 등 연구자 활동을 지속하도록 DBpia가 지원하고 있어요.
커뮤니티
연구자들이 자신의 연구와 전문성을 널리 알리고, 새로운 협력의 기회를 만들 수 있는 네트워킹 공간이에요.
이용수0
2021
[List of Tables] i[List of Figures] iii[List of Abbreviations] v[Bibliographic Notes] viiChapter I Introduction 11.1 Patchless multistage transfer learning for mammogram images 81.2 A novel multistage transfer learning for breast ultrasound images 91.3 HER2 X-transformer 11Chapter II Patchless multistage transfer learning for mammogram images 142.1 Introduction 142.2 Methods 212.2.1 Datasets 212.2.2 Preprocessing 262.2.3 The multistage transfer learning method 282.2.4 Evaluation metrics 402.3 Results 412.3.1 Convolutional neural network-based multistage transfer learning model for breast mammograms 412.3.2 Vision transformer-based multistage transfer learning model for breast mammograms 472.4 Discussion 57Chapter III A novel multistage transfer learning for breast ultrasound images 683.1 Introduction 683.2 Methods 753.2.1 Datasets 753.2.2 Preprocessing 773.2.3 The multistage transfer learning method 793.2.4 Evaluation metrics 873.3 Results 883.3.1 The convolutional neural network-based multistage transfer learning for breast ultrasound 883.3.2 The vision transformer-based multistage transfer learning for breast ultrasound 933.4 Discussion 100Chapter IV HER2 X-transformer: Vision transformers for breast cancer human epidermal growth factor receptor 2 (HER2) expression staging without immunohistochemical (IHC) staining 1054.1 Introduction 1054.1.1 Related works 1074.2 Methods 1094.2 1 The proposed model 1094.2.2 Localization module 1124.2.3 Attention module 1134.2.4 Loss module 1144.2.5 Dataset 1164.2.6 Implementation details 1174.2.7 Evaluation metrics 1184.3 Results 1184.3.1 Experimental settings 1184.3.2 Experimental results 1194.4 Discussion 124Chapter V Conclusion 128[References] 130[Acknowledgement] 165
0