메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-SP 전자공학회논문지 SP편 제41권 제5호
발행연도
2004.9
수록면
185 - 192 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 얼굴의 아이겐공간에서 벡터 양자화 기법을 이용한 얼굴 인식을 제안한다 아이겐페이스 방법의 문제점은 하나의 아이겐페이스로 얼굴의 다양한 변이틀 표현하기에 부족하다는데 있다. 이러한 약점을 극복하기위해 제안된 방법은 아이겐페이스 공간에서 얼굴의 변이를 벡터 양자화 기법으로 군집화한다. 벡터 양자기는 학습과정을 통해 각 사람의 아이겐 페이스 집합을 앙자화된 대표점들로 표현한다. 그리고 인식 과정을 통해 벡터 양자기는 얼굴 데이터 베이스에 저장된 대표점들과 입력된 얼굴 특징벡터와의 양자화 오차를 최소로 하는 대표점을 찾는다. 실험은 Faces94 데이터베이스에서 600장의 얼굴을 가지고 수행하였다. 실험 결과 기존의 아이겐페이스 방법은 최소 64개의 오인식을 하였고 제안된 방법은 코드북의 크기를 4개로 하였을때 최소 20개의 오인식을 보였다. 결론적으로 제안된 방법은 얼굴의 변이를 수용하여 인식률을 향상시키는 효과적인 방법으로 사료된다.

목차

요약

Abstract

Ⅰ.서론

Ⅱ.아이겐페이스

Ⅲ.벡터 양자기

Ⅳ.주성분 분석 벡터 양자기

Ⅴ.실험결과

Ⅵ.결론

참고문헌

저자소개

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-014319174