메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국경영과학회 한국경영과학회 학술대회논문집 한국경영과학회 2002년 추계학술대회논문집
발행연도
2002.10
수록면
258 - 261 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Collaborative filtering has been known to be the most successful recommendation technique that has been used in a number of different applications As both the number of customers and the number of products managed in an e-commerce site grow rapidly, however. its widespread use in e-commerce has exposed two major issues that must be addressed The first issue is to reduce the sparsity for the better quality of recommendations and the second issue is to improve the scalability for the better system performance In this paper, we propose a recommendation methodology based on Web usage mining and the product taxonomy to address these issues Web usage mining populates the rating database by tracking the customer shopping behavior on the Web, so results in overcoming the sparsity problem The product taxonomy is used both to reduce the sparsity of ratings and to improve the scalability of searching for like-mined customers through dimensionality reduction of the rating database We experimentally evaluate our methodology on real edata and compare them to the nearest neighbor algorithm Experimental results show that our methodology provides higher quality recommendations and better performance than the nearest neighbor algorithm.

목차

Abstract

1. Introduction

2. Methodology

3. Experimental Evaluation

4. Conclusion

References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-014485048