메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-SD 전자공학회논문지 SD편 제42권 제5호
발행연도
2005.5
수록면
23 - 30 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
확장체 GF(pⁿ)의 구성에서 차수와 다항식 곱셈 방법은 밀접한 관련을 가진다. 기존의 다항식 곱셈 방법인 KO] 및 MSK방법은 효율적으로 계수-곱셈 연산량을 줄인다. 그러나 이들 방법을 이용하여 확장체 곱셈을 구성할 경우, 일반적으로 해당하는 분할 방법의 배수가 되도록 패딩(Padding)하여 구성하지만 이에 대한 기준이 모호하며 계수-곱셈의 연산량이 최소가 되도록 패딩하는 방법 또한 제안되지 않았다. 본 논문에서는 확장체 곱셈을 효율적으로 구성할 수 있는 기본적인 성질과 계수-곱셈의 연산량이 최소가 되는 다항식 차수를 찾는 알고리즘을 제안한다. 본 논문에서 제안하는 알고리즘을 적용하면 기존의 방법을 그대로 적용하여 구성할 때 보다 확장체의 차수가 증가할수록 더 많은 계수-곱셈 연산량을 줄일 수 있다. 따라서 본 논문의 결과는 스마트 카드 등 작은 공간 복잡도를 요구하는 병렬처리 곱셈기에 효율적으로 적용될 수 있다.

목차

요약

Abstract

Ⅰ. 서론

Ⅱ. 기존의 확장체 곱셈 구성 방법

Ⅲ. 효율적인 다항식 곱셈 구성 방법 제안

Ⅳ. 비교

Ⅴ. 결론

참고문헌

저자소개

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-014591165