메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국경영과학회 한국경영과학회 학술대회논문집 한국경영과학회 2005년 춘계학술대회논문집
발행연도
2005.5
수록면
786 - 790 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
During the past few years, various traffic-flow forecasting models, i.e. an ARIMA, an ANN, and so on, have been developed to predict more accurate traffic flow. However, these models analyze historical data in an attempt to predict future value of a variable of interest. They make use of the following basic strategy. Past data are analyzed in order to identify a pattern that can be used to describe them. Then this pattern is extrapolated, or extended, into the future in order to make forecasts. This strategy rests on the assumption that the pattern that has been identified will continue into the future. So ARIMA or ANN models with its traditional architecture cannot be expected to give good predictions unless this assumption is valid; The statistical models in particular, the time series models are deficient in the sense that they merely extrapolate past patterns in the data without reflecting the expected irregular and infrequent future events Also forecasting power of a single model is limited to its accurate.
In this paper, we compared with an ANN model and ARIMA model and tried to combine an ARIMA model and ANN model for obtaining a better forecasting performance. In addition to combining two models, we also introduced judgmental adjustment technique. Our approach can improve the forecasting power in traffic flow. To validate our model, we have compared the performance with other models. Finally we prove that the proposed model, i.e. ARIMA + ANN + Judgmental Adjustment, is superior to the other model.

목차

Abstract

1. 서론

2. 실험방법

3. 예측모델

4. 실험결과

5. 성능비교분석

6. 결론

Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-017693635