메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능정보시스템학회 지능정보연구 한국지능정보시스템학회논문지 제11권 제1호
발행연도
2005.6
수록면
95 - 105 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
얼굴인식을 이용해 출입을 통제하는 보안 시스템에 있어서 얼굴인식성능은 인증 대상의 변화 (표정, 헤어스타일, 나이, 화장)에 커다란 영향을 받는다. 이처럼 수시로 변화하는 환경 변화를 보완하기 위하여 일반적인 얼굴인식 시스템에서는 일정한 보안 임계치를 설정해두고 임계치 내에 포함되는 얼굴을 기존에 등록된 얼굴과 교체하거나 추가적으로 등록하는 업데이트 방식이 사용되고 있다. 그러나 이러한 방식은 부정확한 매칭 결과를 보이거나, 유사한 얼굴에 쉽게 반응할 수 있다. 따라서 우리는 각 얼굴 간의 유사도나 인증 대상의 변화를 흡수하며, 잘못된 얼굴 등 록을 방지하기 위한 방법으로 학습 성능이 우수한 유전자 알고리즘을 제안하고자 한다. 변화가 심하고 유사한 얼굴영상(한 사람 당 10개씩의 변화된 300개의 얼굴 영상)에 대하여 실험을 수행하였고, 얼굴인식기법은 주성분 분석에 기초한 고유얼굴을 이용하였다. 제안된 방식은 기존 얼굴인식 출입통제 시스템에 비해 우성인자의 인식률을 향상 뿐만 아니라 유사 얼굴(열성인자)에 반응하는 비율을 감소시키는 효과를 보였다.

목차

요약

1. 서론

2. 관련 연구

3. 유전자 알고리즘을 적용한 고유얼굴 (Eigenfaces with GA)

4. 실험 결과 및 결론

참고문헌

Abstract

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-017819896