메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 K-means 또는 Fuzzy-c-means 알고리즘에서 클러스터의 중심점을 찾는 과정 중 임의로 선택되는 초기값 선정의 문제를 해결하고, 기존의 단점을 보완하는 새로운 방안으로서 데이타의 분포의 통계적 특성에 따른 초기값 선정 방법을 제안하였다. 기존의 초기값 선정 방법은 초기값에 따라 클러스터링이 매우 민감한 변화를 가져와, 최종적으로 종종 원치 않는 방향으로 가는 문제점을 갖고 있다. 이러한 초기값 선정의 문제가 인지되어 왔지만, 그 문제의 해결방안이 실제적으로 모색된 경우는 없었다. 본 논문에서는 데이타의 통계적 특성을 이용한 초기값 선정 방법을 적용하여, 클러스터링이 형성되는 시간의 단축 및 원치 않는 결과가 생성되는 경우를 약화시켜 시스템의 향상을 가져왔고, 이러한 제안된 알고리즘의 우수성을 기존의 알고리즘과 비교를 통하여 나타내었다.

목차

요약

Abstract

1. 서론

2. K - means와 Fuzzy - c - means 알고리즘

3. 새로운 초기 중심값 설정 방법

4. 실험 및 고찰

5. 결론

참고문헌

저자소개

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017890301