메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
문서 집합 내의 개념 또는 의미 관계의 자동 분석은 보다 효율적인 정보 획득과 단어 이상의 개념 수준에서의 문서간 비교를 가능케 한다. 본 논문에서는 다중요인모델에 기반하여 텍스트 문서로부터 토픽들을 추출하고 이로부터 의미 커널(semantic kernel)을 구축하여 문서간 유사도를 측정하는 방안을 제시한다. 텍스트 문서는 내재된 토픽들의 다양한 결합에 의해 생성된다고 가정하며 하나의 토픽은 공통주제에 관련되거나 적어도 자주 같이 나타나는 단어들의 집합으로 정의한다. 다중요인모델은 은닉층을 갖는 하나의 네트워크 형태로 표현되며, 토픽을 표현하는 단어 집합은 은닉노드로부터의 가중치가 높은 단어들로 구성된다. 일반적으로 이러한 다중요인 네트워크에서의 학습과 추론과정을 용이하게 하기 위해서는 근사적 확률 추정 기법이 요구되는데, 본 논문에서는 헬름홀츠 머신에 의한 방법을 활용한다. TDT-2 문서 집합에 대한 실험에서 토픽별로 관련 있는 단어 집합들을 추출할 수 있었으며, 4개의 텍스트 집합에 대한 문서 검색 실험에서는 다중요인모델의 분석결과에 기반한 의미 커널을 사용함으로써 기본 벡터공간 모델에 비해 평균정확도 면에서 통계적으로 유의한 수준의 성능 향상을 얻을 수 있었다.

목차

요약

Abstract

1. 서론

2. 다중요인모델(Multiple - Cause Models)

3. 다중요인 모델에 기반한 텍스트 문서 분석

4. 실험

5. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017890396