메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김동욱 (숭실대학교) 이수원 (숭실대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.44 No.11
발행연도
2017.11
수록면
1,138 - 1,148 (11page)
DOI
10.5626/JOK.2017.44.11.1138

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
토픽 추출은 문서 집합으로부터 그 문서 집합을 대표하는 토픽을 자동 추출하는 기술이며 자연어 처리의 중요한 연구 분야이다. 대표적인 토픽 추출 방법으로는 잠재 디리클레 할당과 단어 군집화 기반 토픽 추출방법이 있다. 그러나 이러한 방법의 문제점으로는 토픽 중복 문제와 토픽 혼재 문제가 있다. 토픽 중복 문제는 특정 토픽이 여러 개의 토픽으로 추출되는 문제이며, 토픽 혼재 문제는 추출된 하나의 토픽 내에 여러 토픽이 혼재되어 있는 문제이다. 이러한 문제를 해결하기 위하여 본 연구에서는 토픽중복 문제에 대해 강건한 잠재 디리클레 할당으로 토픽을 추출하고 단어 간 유사도를 이용하여 토픽 분리 및 토픽 병합의 단계를 거쳐 최종적으로 토픽을 보정하는 방법을 제안한다. 실험 결과 제안 방법이 잠재 디리클레 할당 방법에 비해 좋은 성능을 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안 방법
4. 실험 및 결과
5. 결론 및 향후 계획
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0