메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 컴퓨팅의 실제 및 레터 정보과학회논문지 : 컴퓨팅의 실제 제9권 제5호
발행연도
2003.10
수록면
521 - 529 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 추천시스템에서 많이 활용되는 협업 여과 방법의 문제점으로 지적되고 있는 희소성(sparsity)으로 인한 유사도의 부정확한 문제를 개선하기 위하여, 인구 통계 정보를 이용한 기법을 제안하였다. 두 사용자간의 유사도는 같은 항목에 동시에 평가된 점수를 기반으로 결정되며, 두 사용자가 동시에 평가하지 않은 항목은 유사도 계산에서 제외된다. 제안된 기법은 이러한 평가 점수 부족으로 인하여 유사도 계산이 정확치 못한 단점을 보완하기 위하여, 인구 통계 정보를 이용한 가상 평가 점수를 부가하여 유사도 계산을 개선, 예측의 정확도를 향상시킨 방식으로 기존의 피어슨 상관관계를 이용한 협업여과 방식의 확장이다. 실험은 Grouplens의 영화 평가 자료를 활용하였고, 평균절대오차(MAE)와 반응자 작용 특성(ROC)값을 이용하여 제안 기법과 피어슨 상관관계를 이용한 협업 여과 방식을 비교 하였다. 제안한 기법이 피어슨 상관관계를 이용한 협업 여과 추천 방식에 비하여 평균절대오차는 9%, 반응자 작용 특성의 민감도는 13% 향상되었음을 확인하였다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. 인구 통계 정보를 이용한 협업 여과 추천의 유사도 개선 기법

4. 실험 및 평가

5. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017895806