메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 소프트웨어 및 응용 정보과학회논문지 : 소프트웨어 및 응용 제32권 제11호
발행연도
2005.11
수록면
1,111 - 1,121 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
협력적 여과 시스템에서 대부분의 사용자들은 모든 아이템에 대하여 선호도를 평가하지 않으므로 인하여 사용자-아이템 행렬은 희박성을 나타내며, 또한 사용자가 평가하지 않은 아이템으로부터 결측치가 발생한다. 일반적인 결측치 예측 방법은 특정 대상의 사용자가 평가하지 않은 결측치를 이 사용자와 비슷한 흥미를 갖는 사용자들의 평가값을 기반으로 예측하나, 기본 평가값 예측 방법은 사용자-아이템 행렬의 결측치를 특정 사용자가 아닌 전체 사용자에 대하여 예측한다. 기본 평가값 예측 방법 중 가장 많이 사용되는 방법은 아이템 평균이나 사용자 평균을 이용한 방법이다. 그러나 이 방법은 아이템이나 사용자의 특성, 또한 데이타 집합의 분포 특성을 전혀 고려하지 않는다는 문제점을 갖는다. 본 논문에서는 이러한 문제점을 해결하기 위하여 데이타 집합에 나타난 사용자의 변동 계수를 이용하는 기본 평가값 예측 방법을 제안한다. 제안한 방법에서는 수식을 이용하여 자동적으로 사용자 변동 계수의 임계값을 선택하고, 그 임계값에 따라 사용자 평균에서 아이템 평균으로 전환하여 사용자들의 결측치에 대한 기본 평가값을 결정한다. 그러나 사용자 변동 계수들의 분포 정보로 인하여 사용자 변동 계수와 임계값이 항상 일정한 관계를 유지하는 것이 아니므로, 제안된 방법에서는 임계값을 선택하기 위하여 사용자 변동 계수의 평균과 변동 계수의 분포 정보를 병합한다. 제안된 방법은 사용자가 영화에 대하여 평가한 MovieLens 데이타 집합을 대상으로 평가되었으며, 기존의 기본 평가값 예측 방법보다 그 성능이 우수함을 보인다.

목차

요약

Abstract

1. 서론

2. 사용자 변동 계수를 이용한 기본 평가값 예측 방법의 구조도

3. 사용자 변동 계수와 변동 계수의 임계값

4. 기본 평가값 예측

5. 성능 평가

6. 결론 및 향후 과제

참고문헌

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015245977