메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
고수정 (인덕대학)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 소프트웨어 및 응용 정보과학회논문지 : 소프트웨어 및 응용 제36권 제10호
발행연도
2009.10
수록면
777 - 785 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
협력적 여과는 특별한 아이템에 대한 사용자의 선호도를 예측하는 데 사용하는 기술이다. 이러한 협력적 여과 기술은 사용자 기반 접근 방식과 아이템 기반 접근 방식으로 구분할 수 있으며, 많은 상업적인 추천 시스템에서 광범위하게 사용되고 있다. 본 논문에서는 저차원 선형 모델을 사용하여 사용자 기반과 아이템 기반을 통합하는 하이브리드 협력적 여과 방법을 제안한다. 제안한 방법에서는 저차원 선형모델 중 비음수 행렬 분해(NMF)를 이용하여 기존의 협력적 여과 시스템의 문제점인 희박성과 대용량성의 문제점을 해결한다. 협력적 여과 시스템에서 NMF를 이용하는 방법은 사용자를 의미 관계로 표현할 때 유용하게 사용되나 사용자-아이템 행렬의 평가값에 따라 정확도가 낮아질 수 있으며, 모델 기반의 방법이기 때문에 계산 과정이 복잡하여 동적인 추천이 불가능하다는 단점을 갖는다. 이러한 단점을 보완하기 위하여 제안된 방법에서는 NMF에 의해 군집된 그룹을 대상으로 TF-IDF를 이용하여 그룹의 특징을 추출한다. 또한, 아이템 기반에서 아이템간의 유사도를 계산하기 위하여 상호정보량(mutual information)을 이용한다. 오프라인 상에서 훈련집합의 사용자를 군집시키고 그룹의 특징을 추출한 후, 온라인 상에서 추출한 그룹의 특징을 이용하여 새로운 사용자를 가장 최적의 그룹으로 분류함으로써 사용자를 분류하는 데 걸리는 시간을 단축시켜 동적인 추천을 가능하게 하며, 사용자 기반과 아이템 기반을 병합함으로써 기존의 방법보다 정확도를 높인다.

목차

요약
Abstract
1. 서론
2. 사용자 군집과 그룹의 특징 추출
3. 아이템 유사도 측정 및 추천
4. 성능 평가
5. 결론
참고문헌

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-018911992