메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인터넷상에 존재하는 수 많은 웹 페이지들에는 정형화되지 않은 각종 정보들이 이종의 형태로 산재되어 있다. 현재의 검색 기술을 통하여 필요한 정보를 찾아내는 것은 시간과 비용이 많이 소요되는 비효율적인 방법으로 이뤄지고 있다. 이러한 상황에서 사용자가 원하는 정보를 검색 및 추출해내어 정형화시키는 것은 매우 중요하다.
전자상거래의 폭발적 성장에도 불구하고 전자상거래 표준 활용 및 적용이 미비하여 e-Procurement, e-Marketplace, on-Line Shopping Mall 등에서 소비자가 원하는 상품 정보를 손쉽게 획득하지 못하고 있다. 이는 공급자에게는 보다 많은 매출의 기회를 구매자에게는 보다 좋은 자재 및 상품을 저렴한 가격에 소싱 할 수 있는 기회를 제공하지 못하는 문제점이 발생한다.
본 연구에서 제안하고자 하는 지능형 상품 에이전트는 소비자가 구매하고자 하는 특정 상품에 대한 공급자 검색 문제를 해결하기 위하여, 시스템 내부 정보의 확장 및 지식화 뿐만 아니라 웹 상의 다양한 상품 정보를 자동적으로 수집 및 가공하여 저장하는 역할을 수행한다. 이러한 연구를 위해서 사용한 기술은 우선 database의 schema를 읽어 들일 수 있는 DB schema reader, 인터넷 웹 페이지(웹 문서)를 방문해서 다양한 정보들의 URL을 수집하는 일을 하는 Meta Search Engine과 Focused Crawler, 그리고 다른 형태의 데이터 구조를 특정 목적에 따라 표준화된 형태로 바꾸는 Wrapper가 있다. 이러한 기술들을 연동하여 필요한 정보들을 추출 공급자 검색 문제를 해결하고자 하는 것이 연구의 목적이다. 정보추출은 사용자의 관심사에 적합한 문서들로부터 어떤 구체적인 사실이나 관계를 정확히 추출하는 작업을 가리킨다.

목차

Abstract

서론

정보추출의 개요

주요 구성요소

기대 효과 및 활용 방안

결론 및 Future Work

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-015435998