메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국조명·전기설비학회 조명·전기설비학회논문지 조명·전기설비학회논문지 제18권 제6호
발행연도
2004.11
수록면
70 - 77 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
산업 응용분야에서 유도전동기 구동시스템의 예상치 않은 고장은 전체 계통의 정지, 막대한 손실 등을 가져올 수 있다. 이러한 문제점을 해결하는 방법 중에 하나로서 본 논문은 유도전동기 구동을 위한 3상 전압형 PWM 인버터에 개방-스위치 손상의 고장진단에 대하여 연구한다. 고장진단 방법으로는, 먼저 고장의 특징추출을 위하여 3상전류를 d-q 전류로 변환한 후 평균 전류벡터를 구한다. 다음으로 여러 종류의 고장 패턴을 진단하기 위하여 한 인공지능 알고리즘을 제안한다. 제안된 기법은 일반적인 뉴로-퍼지 시스템(adaptive neuro-fuzzy algorithm)의 전제부에 클러스터링을 도입한 기법으로 적은 계산 양과 좋은 성능을 갖는다. 최종적으로, 여러 불확실한 요소를 가진 고장계통에 대하여 제안된 알고리즘의 유용성을 모의실험에 의해 검증하였다.

목차

요약
Abstract
1. 서론
2. 클러스터링 기반 진단 알고리즘
3. 인버터 고장의 특성분석
4. 클러스터링 기법을 이용한 고장진단
5. 결론
References
◇ 저자소개 ◇

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-565-015495495