메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국정보기술학회 한국정보기술학회논문지 韓國情報技術學會論文誌 제3권 제5호
발행연도
2005.11
수록면
51 - 63 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
When we obtain an optimal solution using GA (Genetic Algorithm), operation such as crossover, reproduction, and mutation procedures is using to generate for the next generations. In this case, it is possible to obtain local solution because chromosomes or individuals which have only a close affinity can convergent To improve an optimal learning solution of GA, this paper deal with applying PSO (Particle Swarm Optimization) and Euclidian data distance to mutation procedure on GA's differentiation. Through this approaches, we can have global and local optimal solution together, and the faster and the exact optimal solution without any local solution. Four test functions are used for proof of this suggested algorithm.

목차

ABSTRACT
Ⅰ. Introduction
Ⅱ. Euclidian distance for GA-PSO
Ⅲ. Improvement of optimal learning of GA using Euclidian distance
Ⅳ. Simulation and Results
Ⅴ. Conclusion
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-566-016511682