메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국자동차공학회 한국자동차공학회 춘 추계 학술대회 논문집 한국자동차공학회 2004년 춘계학술대회 논문집 Volume Ⅱ
발행연도
2004.6
수록면
922 - 928 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The frictional heat generated at the interface of the rotor and pad of an automotive disk brake can result in thermal distortion of the frictional surface. Known as coning, this effect is found to be the main cause of RTV (rotor thickness variation) and judder. It is, therefore, important to predict the temperature rise and thermal deflection in the early design stage. For these purposes, a pie-shaped model is usually used for a ventilated disk that is evidently three dimensional in shape due to its vent holes. In this paper a new analysis technique is adopted for a ventilated disk in which the rotor is represented using an axisymmetric finite element model. To take into consideration the effects due to the cooling passages, a homogenization technique is used to give the equivalent diffusivity and elastic modulus for elements located at the vent holes. The convective heat transfer coefficients on the disk surface were obtained by CFD analysis and compared to the experimental results in terms of the outlet air speed at the vent holes. Temperature and the resulting runout of the disk were also determined by FEM analysis and compared to the ones from brake dynamometer tests. It is concluded that the assumption of a rotating disk in an infinite field in CFD analysis overestimate the cooling at the disk surface while predicting accurate values at the vent holes. The large undercut is proved to be effective in diminishing the amount of coning. The proposed axisymmetric FEM procedure can be successfully applied in practice, replacing 3-dimensional finite element analysis for optimal shape design to reduce judder in a ventilated disk.

목차

Abstract
1. 서론
2. 대류 열전달 계수
3. 온도 분포
4. 열 변형
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-556-016539953