메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기계 학습 과정에서 수집된 많은 정보들 중에는 학습하고자 하는 개념과 관련이 없거나 중복된 정보를 가진 경우가 많다. 또한 자료 자체에 오류가 있기도 하다. 이와 같이 학습 모델 생성을 위해 수집된 정보를 신뢰할 수 없다면, 학습 과정에서도 정확한 지식 습득이 어렵다. 그래서 기계 학습은 학습 과정에서 정확한 지식 습득을 위해 특징 선택 방법을 사용한다. 특징 선택은 학습할 클래스와 관련이 없거나 중복된 정보를 학습 모델 생성 이전에 제거함으로써 학습 알고리즘의 성능을 향상시킨다. 기존의 특징 선택 방법들은 적절한 특징을 선택하기 위하여 문서가 균등하게 분포되어 있다고 가정한다. 하지만, 실제로는 그렇지 않으며, 문서의 수 또는 문서의 길이가 모두 동일한 학습 예제를 준비하는 것도 매우 어렵다.
본 논문에서는 보다 효율적으로 특징을 선택하기 위해 클래스 별 단어의 불순도와 문서의 불균등 분포를 고려한 특징 선택 방법을 제안한다. 클래스를 대표할 수 있는 특징 후보들을 단어의 불순도 측정을 통해 얻고, 문서의 불균등 분포를 고려하여 특징을 선택한다. 실험을 통해 보다 좋은 성능을 보임을 입증한다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 기존 특징 선택 방법의 문제점
4. 단어의 불순도 및 불균등 분포를 고려한 특징 선택 방법
5. 실험 및 성능 평가
6. 결론 및 향후 연구과제
참고문헌

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015969858