메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문은 두 문서간 유사도 측정 방법을 제안한다. 제안한 유사도 측정 모델의 주안점은 문서간 관련성의 정도를 두 문서간 일치하는 단어(term)및 단어쌍(term-phrase)에 기반하여 이들이 해당 문서에서 차지하는 가중치를 통해 측정하는 것이다. 유사도 측정 과정에 영향을 미치는 특징을 설계함에 있어 기존의 연구들이 하나의 특징만을 고려하였던 것에 비하여 본 논문은 여러 가지 특징들을 고려한다. 즉, 단어뿐만 아니라 단어쌍과 관련된 특징을 결합하여 신경망을 통해 유사도를 측정한다. 제안된 방법의 우수성을 입증하기 위해 두 가지 측면에서 실험하였다. 첫 번째는 두 문서의 동일성 여부를 검증하는 문제이며, 두 번째는 다수의 문서를 대상으로 유사한 문서를 찾는 검색 문제이다. 이 두 가지 실험 모두에서 제안 방법이 기존의 Cosine 유사도 계산 방법 및 구색인 방법에 비해 우수한 성능을 보였다.

목차

요약

Abstract

1. 서론

2. 관련연구

3. 문서간 유사도 측정

4. 실험 및 평가

5. 결론 및 향후 연구

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017891388