메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 다중 분류기를 효과적으로 결합하기 위하여 k-최근접 템플릿방법을 제안한다. 이는 하나의 클래스를 여러개의 템플릿으로 모델링하기 위하여 분류기의 출력값을 기반으로 각 클래별 학습 샘플들을 여러개의 하위 클래스로 분해하고, 각 하위클래스별 분류기 출력값의 평균을 계산하여 지역화된 템플릿을 생성한다. 그 뒤 평가샘플과 각 템플릿간의 거리를 계산하고, k개의 최근접 템플릿들 중 가장 많은 비율을 차지하는 클래스로 평가샘플을 분류한다. 본 논문에서는 클래스 분해를 위해 C-means 클러스터링 알고리즘을 이용하였으며, k값은 주어진 데이타 셋의 클래스 내 밀집도와 클래스 간 분리도에 따라 자동으로 결정하였다. 제안하는 방법은 각 클래스별로 여러 개의 모델을 사용하며, 이들 중 가장 유사한 하나의 모델과 매칭하는 대신 k개의 모델을 참조하기 때문에 안정적이고 높은 분류성능을 획득할 수 있다. 본 논문에서는 UCI와 ELENA데이타베이스를 이용한 실험을 통해 제안하는 방법이 기존의 결합 방법들에 비해 우수한 분류성능을 보임을 확인하였다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. k-최근접 템플릿기반 분류기 결합
4. 실험 및 결과
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-014777149