메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제11권 제7호
발행연도
2001.12
수록면
659 - 665 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Relevance feedback is the most popular query reformulation strategy. in a relevance feedback cycle, the user is presented with a list of the retrieved documents and, after examining them, marks those which are relevant In practice, only the top 10(or 20) ranked documents need to be examined. The main idea consists of selecting important terms, or expressions, attached to the documents that have been identified as relevant by the user, and of enhancing the importance of these terms in a new query formulation, The expected effect is that the new query will be moved towards the relevant documents and away from the non-relevant ones.
Local analysis techniques are interesting because they take advantage of the local context provided with the query. In this regard, they seem more appropriate than global analysis techniques. In a local strategy, the documents retrieved for a given query q are examined at query time to determine terms for query expansion. This is similar to a relevance feedback cycle but might be done without assistance from the user.

목차

Abstract
1. Introduction
2. Information Retrieval of DNF
3. Information Retrieval model of RF and LCAF
4. Experimentation and Result
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014805708