메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
속성선택(Feature Selection)은 패턴분류 문제에서 분류기들의 성능을 향상시킬 수 있는 중요한 부분으로 다양한 기법들이 연구되어지고 있다. 특히, 많은 변수와 속성들을 가지는 데이터를 패턴분류 하는 과정에서 주요 속성부분집합을 추출하여 이용함으로써 분류기의 연산속도 및 정확도를 향상시킬 수 있다. 본 논문에서는 유전자 알고리즘과 정보이론의 상호정보량을 이용하여 속성선택을 하는 기법을 제안하였다. 제안된 기법의 성능을 평가하기 위하여 패턴분류 문제에 적용하고 그 성능이 우수함을 확인하였다.

목차

요약
1. 서론
2. 상호정보량을 이용한 속성선택
3. 유전알고리즘을 이용한 속성선택
4. 상호정보량과 유전알고리즘을 이용한 속성선택 알고리즘
5. 시뮬레이션 및 결과 고찰
6. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014903096