메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 ELM(Extreme Learning Machine)을 이용하여 계산속도 뿐만 아니라 성능면에서도 우수한 입력 속성선택 기법을 제안한다. 일반적으로 입력 속성 선택문제는 다양한 속성들의 영향을 고려함으로써 모든 입력속성들을 평가하는데 많은 계산량이 요구되는 단점이 있다. 이러한 문제점을 개선하기 위하여 학습속도가 기존의 신경회로망에 비하여 월등히 우수한 ELM 알고리즘을 적용한다. 입력속성 선택은 ELM으로부터 산출된 출력값을 이용하여 출력 오차에 영향이 큰 속성들 순으로 순위를 결정한 후, 전방향 선택이나 후방향 선택기법을 이용하여 입력속성을 선택한다. 제안된 방법은 다양한 데이터에 적용하여 타당성을 검증한다.

목차

요약
1. 서론
2. ELM의 구조 및 학습 알고리즘
3. ELM 기법을 이용한 속성선택
4. 시뮬레이션 및 결과 고찰
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014884770