메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Background Subtraction은 움직이는 물체 검출에 가장 많이 사용되는 방법 중 하나이다. 배경이 복잡하고 변화가 심한 경우, 배경을 실시간으로 얼마나 정확하게 학습하는가가 물체 검출의 정확도를 결정한다. Gaussian Mixture Model은 이러한 배경의 모델링에 가장 많이 쓰이는 방법이다. Gaussian Mixture Model은 확률적 학습 방법을 사용하는데, 이러한 방법은 물체가 자주 지나다니거나 물체가 멈춰있는 경우, 배경을 정확하게 모델링하지 못한다.
본 논문에서는 밝기 값에 대한 확률적 모델링과 밝기 값의 변화에 따른 처리를 결합하여 혼잡한 환경에서 배경을 정확하게 모델링할 수 있는 학습 방법을 제안한다.

목차

요약
1. 서론
2. Object Region Mask
3. Object Region Mask를 이용한 학습
4. 실험 결과
5. 결론 및 향후 과제
6. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015026005