메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제19권 제2호
발행연도
2009.4
수록면
83 - 92 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인터넷 기술의 발전과 더불어 다양한 악성코드들이 제작되고 있다. 본 연구에서는 윈도우 환경에서 동작하는 악성코드를 분류하기 위한 방법론을 제시하고 시험용 분류 시스템을 소개한다. 악성코드는 매일 수천 건씩 발생하고 있으며, 이를 체계적으로 분류하여 발견된 바이러스가 기존의 악성코드와 어느 정도 유사한지에 대한 판단기준을 설정할 필요가 있다. 변종인 경우에는 이전 악성코드와의 유사성이 어느 정도인지에 대한 유사도 제시가 필요할 것이다. 이러한 분석은 악성코드 분석가들의 업무 노드를 줄여줄 수 있을 뿐만 아니라, 악성코드 분석가들의 성향에 따라 다르게 분석될 수 있는 오류를 줄여 줄 수 있다. 본 연구에서는 악성코드를 크게 9개의 그룹으로 분류하고, 이를 다시 그룹의 특성이 맞는 여러 개의 클러스터로 구분하였다. 악성코드가 소속되는 각각의 클러스터에서는 기준점을 기반으로 악성코드의 유사도가 계산되며, 이 유사도에 의해서 악성코드 분석가들은 기존의 악성코드와 새로운 악성코드의 유형 및 관련 정도를 파악하게 된다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 악성코드 분류
Ⅲ. 악성코드 데이터베이스 설계
Ⅳ. 악성코드 분류 시스템
Ⅴ. 결론
참고문헌
〈著者紹介〉

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-019499526